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The Kaitiaki Intelligence Platforms (KIPs) project aims to position Māori at the 
forefront of cutting-edge remote environmental sensing in Aotearoa. 

Leveraging the latest and emerging technologies, this project is designing a robust 
tech platform that will empower iwi to access real-time and precise information 
about the environmental condition of their rohe (territories). Furthermore, it will 
equip Māori farming collectives with the essential data to confidently manage 
their farms in alignment with their kaitiaki principles. Additionally, the platform 
will facilitate Māori farms in verifying their sustainable production to markets, 
regulators, and assurance bodies. Simultaneously, it will provide invaluable data 
to iwi for informed decision-making regarding their environmental management 
plans and policies 
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The Kaitiaki Intelligence Platform4

The environmental sensor network design 
outlined in this report is conceptual and 
based on current technological standards 
and methodologies. It represents an 
experimental approach to environmental 
monitoring and is intended to serve 
as a preliminary framework for further 
development. Given the rapidly evolving 
nature of sensor technology and 
environmental monitoring practices, the 
specifics of this design may be subject to 
change as new technologies emerge or 
as more detailed project requirements 
are defined.  The design is provided for 
informational purposes and should be 
viewed as a starting point for discussion 
and planning. It does not guarantee specific 
performance outcomes or compatibility 
with all potential environmental conditions 
and monitoring needs. Stakeholders should 
conduct a detailed and comprehensive 
analysis, including field trials and 
technology validation, to adapt and refine 
the design to meet the specific objectives 
and operational conditions of the intended 
deployment.  The implementation of this 
sensor network design will require careful 
consideration of technical, environmental, 
and logistical factors, and it should be 
undertaken with flexibility to accommodate 
necessary modifications and improvements 
based on ongoing research and 
development in the field.

The cost estimates provided herein are 
preliminary and based on current market 
analysis, intended as a general guide 
for initial budgeting purposes. They are 
not definitive and may vary significantly 
depending on actual project conditions, 
technological advancements, market 
fluctuations, and specific implementation 
challenges encountered.  Before 
proceeding with project implementation, 
a comprehensive financial assessment 
must be conducted. This detailed cost 
analysis should account for all capital and 
operational expenses, including installation, 
maintenance, potential research and 
development, and any contingency 
planning. This thorough financial planning 
is essential to ensure that the project is 
financially viable and to prepare for any 
budgetary adjustments that may be 
required during the course of the network’s 
development and deployment. 

Disclaimer



Māori possess profound whakapapa connections to the lands and waters of Aotearoa 
New Zealand (A-NZ), with a strong commitment to protecting and enhancing the 
environment. This commitment extends into organisations, with Māori agribusiness 
collectives (MACs) seeking enhanced environmental intelligence for farming operations 
and iwi seeking data for environmental management and resource issues. 

Environmental sensing technology is advancing rapidly, offering significant opportunities 
for MACs and iwi to develop and deploy environmental sensor networks that provide 
continuous and comprehensive environmental data. Historically, Māori have been quick to 
embrace and integrate new technologies into their culture, all while maintaining their  
core values. 

There is a high demand for quality environmental data across various sectors. The 
sustainable finance sector is in search of reliable environmental data to ensure that their 
investments remain secure amidst tightening environmental regulations. Similarly, the 
agriculture and forestry assurance sectors require such data to prove the sustainability of 
their practices to the market and regulators. However, integrating this high-quality data 
into their systems poses challenges due to issues with their data infrastructure and the 
challenges they face in establishing data standardisation. By developing and deploying 
environmental sensor network, Māori have the chance to lead in supplying detailed 
environmental data to these sectors, which could help finance the development of a 
sensor network.

This environmental data will also enable MACs to command higher prices for their 
products because of the growing international demand for sustainably produced goods. 
These market segments will pay a premium but require verification that the environmental 
claims are real. 

Based on a detailed review of Māori, iwi, and MAC environmental reporting frameworks, 
alongside workshops with iwi and MACs, it was determined that these entities are seeking 
environmental intelligence that is framed from Māori worldview and draws upon both 
scientific biophysical indicators and local indigenous experiential knowledge  
and awareness.

This report details a design for an environmental sensor network that can meet these 
aspirations and generate the types of data that iwi and MACs seeking, while also 
generating data that would meet the needs of the sustainable finance sector, markets, 
and regulators. This network is referred to as the Kaitiaki Intelligence Platform (KIP).

Quick Summary
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The first pillar of the network is a range of new sensing technologies combined 
with local mātauranga (indigenous knowledge). In terms of technology, data would 
be generated by satellite, plane, or drone mounted remote sensors, such as LiDAR, 
hyperspectral imaging, and GNSS-R reflectometry, in combination with on-ground 
sensors, for example lysimeters (measuring water quality) and eDNA (measuring 
biodiversity). In terms of mātauranga, sources of data may include, for example, 
knowledge of changes in environmental patterns, such as species abundance or 
migrations. Mātauranga can guide remote and in-situ sensors in terms of where and 
what biophysical data is gathered.

The sensors would gather significant quantities of data that needs to be organised. 
Making sense of the data is the second pillar of the KIP, and is referred to as taputapu, 
or pattern recognition. Following significant advances, Artificial Intelligence (AI) is a 
technology that enables rapid pattern recognition within data to identify signatures of 
environmental health. However, to become accurate AI needs to be trained through 
ground truthing. Mātauranga Māori alongside field research can be used to do this to 
ensure that the patterns being recognised match the science and experience on the 
ground. 

The large quantities of data analysed, modelled, and processed by AI needs to be 
stored. This is third pillar of the KIP, with the need for a data warehouse that stores 
and protects the data. Special consideration needs to be given to indigenous data 
sovereignty, with emphasis on protecting valuable environmental data generated 
through the prompting and guidance of mātauranga Māori – including AI algorithms.

The fourth pillar of the KIP is the user interface. This frames and communicates the 
environmental information generated by the KIP.  Drawing on a range of Māori, MAC, 
and iwi environmental reporting systems, a whakapapa (genealogical) structure has 
been suggested, which organises the information into different atua domains, for 
instance Tāne-mahuta (forest and vegetated areas), Rongomātāne (cultivated areas), 
Hinemoana (water bodies), and Tūmatauenga (human society). This grounds the KIP in 
a relational worldview, with the relationship between humans and the environmental 
atua being gauged in terms of utu (relationship balance), and more particularly whether 
humans are acting in ways that enhance or diminish the mauri (vitality) or mana 
(dignity) of environmental atua. 

The Kaitiaki Intelligence Platform6
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It is envisioned that a user interface will communicate the state of the environment for 
MACs or iwi through this relational framing. However, it would also need to communicate 
information in biophysical formats that are crucial for MACs and iwi to engage with 
governments, markets, and regulators – and to potentially sell data to clients. The 
biophysical data prioritised by MACs and iwi in the design include: biodiversity; water 
quality, quantity, and use efficiency; soil quality; greenhouse gas emissions (GHGs) and 
sequestration; and stock management. The mediums for communicating this range of 
environmental information might include data reports, geospatial mapping, and virtual 
reality. A schematic of the full design of the KIP can be found in Figure 1 of the report.

The KIP has adopted a modular design, which would enable the KIP to be built using 
a staged approach, that is module-by-module according to priority and resourcing. 
However, there are efficiencies that can be gained through a complete build. A hybrid 
approach, which considers the entire system while developing individual modules, may 
offer the best of both worlds, combining efficiency with resource-driven development 
and tailoring each module to local conditions for improved predictive accuracy.

It is estimated that a full KIP build, following a hybrid approach, would cost approximately 
NZ$50million, with NZ$12m in maintenance costs – primarily associated with the 
purchase of satellite data.

It is concluded that building KIPs would require a consortium approach amongst MACs 
and iwi, with select involvement of the public sector in terms of funding and research 
investment, and private sector in terms of accessing data and technology.
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The Kaitiaki Intelligence Platform8

Introduction

The purpose of the Kaitiaki Intelligence 
Platform (KIP) project is to position Māori as 
first movers in environmental intelligence. 
Environmental sensing technology is 
advancing rapidly, offering significant 
opportunities for Māori agribusiness 
collectives (MACs) and iwi. Māori have a 
strong history of rapidly adopting and 
incorporating new technologies into their 
culture, whilst still retaining core values. 
In fact, mātauranga Māori can be used to 
shape how this technology develops and 
how it is applied. As part of this knowledge 
system, Māori have their own methods 
and techniques for environmental sensing 
based on long-standing relationships with, 
and experiences of, place. This includes 
knowledge of changes in the abundance of 
plants, birds, insects, fish, across land and 
waterscapes. There is deep mātauranga 
on the underpinning rhythms of nature, 
based on the maramataka and whakaaro 
on seasonal changes, and how humans 
and non-humans move according to these 
patterns - whether the migration of fish, 
or the arrival or departure of birds in the 
spring and autumn. Deep insights into 
methods of environmental management 
are also pervasive, with the capacity to 
predict the impacts and consequences of 
specific actions on the environment. 

On a wairua level, there is knowledge 
of the representatives of the ancestor 
communities that make-up the non-
human world - the atua, and the spirits of 
nature including taniwha and patupaiarehe 
that exist between the material and non-
material, dwelling in our rivers and on our 
mountain tops and valleys. Drawing on this 
knowledge many āhika can sense and know 
the changes happening to our environment 
and often acting as the environmental 
conscience of their tribal territories to draw 
attention to what is happening to the mauri 
and mana of our environment and how to 
respond.

In conjunction with the deep 
environmental awareness, Māori have 
also adopted scientific methods and 
technologies to supplement and augment 
their indigenous environmental sensing 
capabilities. While mana whenua can tell 
that the mauri of a river, forest, or wetland 
has declined or improved, pinpointing the 
specific origins and causes can at times 
be difficult when there may be multiple 
factors at play. It is for this reason that many 
MACs and iwi adopt scientific testing and 
monitoring, using their knowledge and 
insights to guide the scientific process, 
interpret results, and communicate them to 
audiences using their own cultural framing. 
In this way there is complementary 
interchange between science and 
mātauranga Māori. Māori also operate 
in a political environment where there is 
a strong emphasis on using knowledge 
generated via scientific evidence to make 
decisions. Consequently, generating 
scientific knowledge in an interchange 
with mātauranga Māori provides a powerful 
means for Māori to influence decisions 
concerning the environment by councils 
and central government.

In this report, we introduce MACs and 
iwi to the latest environmental sensing 
technology. We review this technology and 
look at the various technologies that can be 
brought together to build a platform that 
can provide comprehensive environmental 
monitoring and intelligence - we refer to 
this as Kaitiaki Intelligence Platform. We 
explore how such a platform might be 
framed using mātauranga Māori, and how 
such a platform could be used by MACs and 
iwi to enhance their farming and forestry 
practices, while generating insights to help 
them monitor the environmental health 
of their tribal lands and make informed 
resource management decisions.
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We also outline how this type of 
environmental intelligence is in significant 
demand in the assurance sector and 
sustainable finance sector - where 
regulators, industry, investors, and 
consumers are looking for hard data and 
evidence that agricultural and forestry 
businesses are sustainable. Such data can 
be sold to generate income and be used by 
MACs and iwi to verify the sustainability and 
indigenous authenticity when selling their 
products in premium markets.

In this report, the emphasis has been 
placed on exploring the new and innovative 
technologies, how they might be applied 
and bundled into a KIP to generate types 
of environmental intelligence that MACs 
and iwi are seeking, and how much it might 
cost to build a platform. However, the way 

in which mana whenua may wish to adopt 
and use the new technologies will differ 
depending on context and the tikanga 
specific to each hapū or iwi grouping. 
Consequently, the focus in the report is on 
a general framing of how a platform might 
be deployed. In conclusion, KIPs offer iwi 
and MACs the opportunity of becoming the 
innovators and leaders in the adoption and 
utilisation of novel environmental sensing 
technologies generating comprehensive 
insights into the environmental changes 
across their whenua and awa. 

Lastly, this report is the product of six 
‘feeder reports’ which have been conducted 
across several objectives, bringing together 
desktop research and expert interviews, 
and where relevant the hyperlinks to these 
feeder reports have been provided. 
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Over the past three decades, Māori have 
gained prominence in the primary sector. 
Numerous Māori agribusiness collectives 
(so called as the land is governed for the 
benefit of a broader group of owners - 
hereafter ‘MACs’), including land trusts, 
incorporations, and iwi-owned corporations, 
have established successful farming and 
forestry enterprises. These enterprises 
are recognised for their profitability and 
commitment to Māori environmental 
values. While many MACs utilise platforms, 
such as Overseer and FARMAX, to evaluate 
their environmental performance, these 
systems are typically designed to meet 
regulatory, market, and production 
demands rather than the needs of trustees, 
directors, managers, and collective owners. 
These constituents require detailed, 
customised environmental intelligence to 
guide their farming and forestry activities 
to ensure they are operating in alignment 
with their indigenous values.

In addition to their role in the agricultural 
sector, iwi have also become politically 
prominent, securing a degree of influence 
over the environmental governance of 
their tribal territories. Regional and district 
councils are legally required to consult 
with local iwi when developing their plans 
and policy statements. Local iwi also 
have the authority to express concerns 
or opposition to the granting of resource 
consents for activities they believe may 
negatively impact the environment from 
their cultural perspective. Furthermore, the 
current resource management legislation 
is undergoing reform, with the Māori input 
and influence set to become even more 
robust. However, when consulted, iwi often 
operate in an information vacuum. They 

have limited access to the type or quality 
of environmental data required to develop 
environmental plans and assess impacts 
from their cultural perspective. Many 
environmental monitoring frameworks 
have been developed by Māori for broader 
catchment and regional scales to target 
specific species and ecosystems such as 
kauri and rivers. These frameworks have 
largely emerged because of the growing 
role iwi have in environmental and resource 
management and are generally built on a 
foundation of indigenous values and gather 
a range of data. Yet, the collection of this 
data is costly and incomplete. 

Most MACs and iwi also have an explicit 
values framework. These frameworks are 
generally developed as part of broader 
charter or constitution, and usually cover 
a broad range of environmental, social, 
cultural, and economic parameters. 
However, while these frameworks are 
used to both to guide decision-making 
and assess outcomes in annual reports, 
they are rarely monitored or measured 
in any systemic or rigorous fashion. Like 
corporate values more generally, they 
are often presented as aspirational goals 
or ambiguous objectives rather than 
quantifiable targets or baseline goals. This 
is not because MACs and iwi do not want 
to be able to monitor and measure these 
parameters but rather because obtaining 
this data has been beyond their capacity. As 
entities that strategise in long-term, often 
intergenerational, time periods the focus 
of many MACs and iwi is to operationalise 
their values frameworks, as Māori values are 
action-oriented, functioning as ethics that 
must be assiduously and actively upheld.

Māori need quality 
environmental intelligence 
with cultural fit
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In summary, MACs and iwi need quality 
environmental intelligence that meets 
their cultural needs. Previously, the 
construction of technology platforms 
capable of delivering the necessary level 
of environmental data required by MACs 
and iwi was either prohibitively expensive 
or technically infeasible. However, recent 
advancements in environmental sensing, 
artificial intelligence (AI), and data 
warehousing combined with dramatically 
falling costs have made this both financially 
and technically viable. It is plausible that 
the existing farm platforms MACs use may 
soon become obsolete or be integrated into 
new, next generation, dynamic systems. 
A combination of affordable in-situ and 
remote sensors will generate vast amounts 
of real-time, high-fidelity environmental 
data. AI will structure this data, creating 
digital twins of farm environments that can 
guide on-farm management decisions to 
achieve desired environmental outcomes. 
Similarly, this technology can be used to 
generate digital twins of iwi tribal territories. 
Existing environmental monitoring systems 
and models administered by local and 
central government that currently provide 
data to iwi may also become obsolete or the 
data they produce may be integrated into 
these next-generation platforms. However, 
if Māori are not involved in the design of 
these systems they risk having to use one 
that enforces a Western-centric worldview 
onto their operations1,2.

Broader internal and external drivers 

MACs and iwi face numerous, sometimes 
conflicting, internal and external pressures 
including collective owner demands, 
economic performance, environmental 
sustainability, regulatory requirements, 
and cultural obligations. These pressures 
are exacerbated by a broader national 
imperative to transform the economy in 

the face of environmental limits. Similarly, 
for landscapes recognised as legal persons, 
innovative restoration and management 
is required to realise Māori community 
aspirations with respect to kaitiakitanga 
(guardianship) at scale. Culturally-framed, 
environmental intelligence platforms can 
help overcome many of these pressures. 

As outlined, MACs and iwi are beholden 
to their collective owners, who want 
reassurance that their lands are being 
managed in a way consistent with 
their values, whilst also delivering 
economic returns. These owners are 
often geographically dispersed and have 
varying connection to their culture and 
land, requiring communication - and 
the underpinning environmental data - 
that has a high degree of transparency 
and clarity. High quality, comprehensive, 
and reliable environmental data is of 
fundamental importance to MAC owners 
and iwi, particularly when it is gathered, 
presented, and acted upon in ways that 
align with Māori environmental values. It 
will also help increase economic outcomes 
whilst simultaneously conserving and 
enhancing the environment. 

Externally, MACs and iwi face a range of 
pressures to provide environmental data 
and maintain the highest environmental 
standards. These pressures come from 
markets, regulations, public opinion, 
policy, and finance. In terms of markets, 
consumers and retailers are increasingly 
seeking products made sustainably, 
with demands for these claims to be 
verified through tracing and assurance 
schemes. MACs also face many regulatory 
requirements around environmental 
standards and reporting that require 
environmental data. More nebulous, but 
Māori have also long campaigned for 
higher environmental standards, creating a 
burden of proof on Māori primary producers 
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to ‘walk the talk’. The Aotearoa New 
Zealand (A-NZ) government has indicated 
a transition to a low emission, carbon 
neutral primary economy in the coming 
decades, with numerous government 
policies and roadmaps outlining the need 
for improved environmental outcomes and 

also increased monitoring. The finance 
sector is also increasingly interested in 
the environmental credentials of loan 
applicants, particularly due to these other 
pressures and the consequent ongoing 
economic viability of the operation.
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How to build Māori values 
into next-generation 
environmental intelligence 
platforms 
To ensure that KIPs deliver environmental 
intelligence that aligns with indigenous 
values and guides decision-making, it is 
essential that they are shaped according to 
Māori cultural perspectives. 

This involves a four-stage process: 

1. The indigenous knowledge structure 
must be made explicit.

2. This structure needs to be used to 
determine the types of environmental 
sensing data that should be incorporated 
into the platform.

3. The structure should guide the training 
of AI to model environmental data.

4. It must influence how the generated 
information is communicated to support 
decision-making. 

A report on stage one has already been 
completed. This four-stage process is 
outlined on p14 (overleaf).

Making the Māori knowledge 
structure explicit

Māori environmental values are shaped 
by mātauranga Māori and Te Ao Māori. 
Together, these are guided four key 
underlying axioms: reality is holistic, in that 
humanity and nature are nor separate, nor 
are the material and immaterial worlds; 
relationships are central, placing process 
over substance and dynamism over 
materiality; balance is the most important 
dynamic in these relational processes; 
and that reality is cyclical, which places 
importance on both the past and future as 
well as the present3. 

... reality is holistic, in that humanity and nature are 
nor separate, nor are the material and immaterial 
worlds; relationships are central, placing process over 
substance and dynamism over materiality; balance 
is the most important dynamic in these relational 
processes; and that reality is cyclical, which places 
importance on both the past and future as well as 
the present.
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A simplified Māori knowledge structure for developing KIPs may be built on five 
fundamental Te Ao Māori concepts that emerge from these axioms: 

Whakapapa 
The genealogical framework that outlines the history, relationships, and 
interconnections between entities, which, from a Māori perspective, include both 
humans and non-humans4,5,6. Through this lens, all entities in the world are related 
and part of an extended kin-group or ‘cosmological family’. For instance, entities may 
include: Papatūānuku, Ranginui, Tangaroa, Tāwhirimātea, Tāne-mahuta, Rongomātāne, 
and Tūmatauenga etc7. 

Mauri 
From a Māori cosmological perspective, mauri is a central animating principle8,9. It can 
be used for understanding and assessing the vitality of both human and non-human 
entities10. Entities in a state of high health and vitality are considered to have abundant 
mauri, while those with compromised health and vitality have low mauri. Negative 
actions by one entity can diminish the mauri of another. For instance, pollution of a river 
by humans will diminish the river’s mauri11. 

Mana 
The concept has a rich array of meanings and in this context, mana refers to the 
inherent dignity and intrinsic value of an entity, whether human or non-human12,13,14. 
Like mauri, the negative actions of one entity can diminish the mana of another. For 
example, harm inflicted by a human on another human, or a river, will diminish the 
mana of the  
affected entities.

 

Utu
A concept with many meanings and in this context, utu refers to the natural tendency 
of relationships between entities to establish equilibrium in response to imbalances15. 
For instance, pollution by a human community that diminishes a river’s mauri creates a 
negative imbalance. This imbalance may be redressed by the river no longer providing 
clean water or harvestable foods. Positive imbalances can also occur, such as when 
pollution entering a river is addressed, allowing the river to provide clean water. 

Tauutuutu 
The ethical obligation to create positive imbalances between humans, and between 
humans and the environment, to encourage reciprocating relationships between 
entities16. 

Together these five concepts work together to form a holistic worldview and 
environmental ethic. Whakapapa defines the different human and non-human entities 
that are in a relationship with each other. Mana and mauri gauge the current vitality 
and status of the entities, while utu conceptualises the relationships balances and 
imbalances. In terms of environmental ethics, tauutuutu encourages the formation of 
reciprocal relationships between entities and ascending cycles of growth.

1

2

3

4

5
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The concept of whakapapa defines the 
domains of interest, determining whose 
mana and mauri gets measured. For 
instance, for MACs, this might include 
the mauri of Papatūānuku, Tangaroa, 
Tāwhirimātea, Tāne-mahuta, Rongomātāne 
and Tūmatauenga. In terms of gauging the 
mauri and mana of these entities, Māori 
authorities typically use a combination 
of standard scientific indicators and 
indigenous knowledge, providing a 
comprehensive understanding of local 
environments. For instance, the mauri 
of a waterway might be gauged using 
standard scientific measurements such as 
nitrate, phosphate, pH, and sedimentation 
levels. Simultaneously, indicators derived 
from mātauranga, such as changes in 
the behaviour or abundance of certain 
species, seasonal cycles, and areas known 
as sensitive to environmental change, may 
also be used. Qualitative indicators may also 
be incorporated, such as intuitive sensing 
of an environment’s vitality. The use of both 
objective and subjective metrics has shown 
to be critical to sustainability endeavours 
to capture the broad reality of ‘nature’ 
and seizing the attention of an array of 
stakeholders. It is often found that hard 
scientific metrics overly reduce complex 
systems, universalise different contexts, 
and are often not as accurate. Furthermore, 
through numerous projects and initiatives, 
Māori have shown they are able to enfold 
both qualitative and quantitative metrics 

into their worldview without compromising 
the core values. In most cases, when done 
properly, this hybrid approach is able to 
enhance human-environment relationships 
and strengthen Te Ao Māori. 

Using a Māori knowledge structure 
to guide the training of AI to model 
environmental data

The interconnectedness of ‘Whakapapa’ 
can help guide the development of AI 
models that better capture the complexity 
and interconnections between atua 
domains, as well as mapping the relative 
value and significance of different 
relationships. The concepts of mauri, 
mana, and utu can guide AI to model 
human-environment relationships in 
terms of relational and ethical balance – 
with particular regard to maintaining and 
enhancing vitality and dignity across atua 
domains. 

Although all Māori share a common 
knowledge structure, individual hapū 
possess detailed local knowledge, refined 
over centuries. This knowledge can be used 
to train and validate AI models. For instance, 
knowledge of weather cycles can calibrate 
AI generated weather models. Furthermore, 
mātauranga can establish ethical 
guidelines in the use of AI. For example, 
tauutuutu could guide AI modelling 
to identify to identify processes that 
optimise human-mana/mauri enhancing 
relationships. Finally, mātauranga can 

Based on the Māori 
knowledge structure, what 
types of environmental data 
should be incorporated 
within the platform
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guide the prioritisation of specific cultural 
values into AI models. For example, an 
AI model could be designed to prioritise 
environmental outcomes that align with 
indigenous values, such as the preservation 
of specific species or habitats. Incorporating 
AI into environmental monitoring platforms 
gives them the intelligence required to 
harness these information flows, turning 
them into adaptive and predictive systems 
that can guide decision-making grounded 
in wisdom. 

Using a Māori knowledge structure 
to influence how the generated 
information is communicated to 
support decision-making

The data generated through the modelling 
process needs to be communicated to 
end-users, and in ways that will help them 
make informed decisions and to learn from 
the data as effectively and efficiently as 
possible. Drawing on the Māori knowledge 
structure, the entities involved, and the 
quality of the relationships between them, 
in terms of utu, mana, and mauri would 
appear to be important considerations 
when it comes to presenting the data. 
There are many ways to represent these 
relationships including GIS mapping 
systems which provide an interface for 
viewing numerous environmental datasets, 
environmental digital twins that create 
virtual representations of the environment 
with ongoing data inputs, and virtual reality 
that provides immersive 3D representations 
or augmented reality which enables 
graphic overlays when users move through 
landscapes. For instance, an iwi wanting 
to know the state of mahinga kai (food-
gathering place) in their takiwā  might be 
provided maps indicating the location and 
mauri of mahinga kai. While a virtual digital 
twin might visually show the mahinga kai 
areas, how they have changed over time, 

and how they are predicted to change in 
the future. A virtual reality representation 
might visually fly you through the areas 
showing the current state and what 
future changes might look like, while an 
augmented reality representation might 
be used to show landowners what effects 
different environmental strategies might 
have on their land as they walk through the 
landscape. 

The use of both objective and 
subjective metrics has shown 
to be critical to sustainability 
endeavours to capture the 
broad reality of ‘nature’ and 
seizing the attention of an 
array of stakeholders. It is often 
found that hard scientific 
metrics overly reduce complex 
systems, universalise different 
contexts, and are often not 
as accurate. Furthermore, 
through numerous projects 
and initiatives, Māori have 
shown they are able to 
enfold both qualitative and 
quantitative metrics into 
their worldview without 
compromising the core values. 
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KIPs would be distinct given the primary 
intent of such platforms would be to 
support MACs and iwi to act as kaitiaki 
of their whenua, which means operating 
according to Māori environmental values. 
Other elements could be built into any 
design to provide data and environmental 
reporting for a range of additional 
purposes. As noted, there are numerous 
external requirements driving the need 
for Māori to develop and implement 
these KIPs, and while the data will be 
primarily centred around fulfilling Māori 
environmental values, it can also be utilised 
to fulfil these requirements. Specifically, 
the following three sections will outline 
how the data generated by KIPs can be 
used for assurance reporting, sustainable 
finance reporting, and accessing premiums 
from markets through the verification of 
product environmental attributes. Feeder 
reports exploring each of these have been 
conducted and hyperlinks for each are 
provided in the text.

Broadening the design to include 
assurance reporting (see feeder 
report here)

As part of A-NZ farming and forestry 
industries, MACs already need to gather 
environmental data to meet various 
reporting standards, including regulatory 
standards imposed by the government. The 
NZ Freshwater Farm Management Program 
is an example – a standard implemented 
by regional councils that aims to address 
freshwater degradation. It requires MACs 
to develop Farm Environment Plans (FEPs) 
that detail their environmental strategies 
for improving water quality and to 
undertake water quality monitoring. 

Gathering environmental data for 
assurance purposes is also sought by 
some industries - usually to demonstrate 
compliance with standards required by 
markets (e.g., supermarket chains) and 
overseas regulators. An example is the 
NZ Farm Assured Programme (NZFAP), 
developed by processors in the red meat 
sector to demonstrate their commitment 
to sustainable farm practices. It requires 
participating farmers to have detailed 
farm plans for protecting water quality, 
preserving biodiversity, managing effluent, 
and mitigating greenhouse gas emissions. 
It is accompanied by regular on-farm audits. 
Another example, from the dairy sector, 
with similar features is the Synlait’s “Lead 
with Pride” assurance programme.

There are internationally recognised 
assurance systems that some MACs use 
that require environmental information 
to be gathered. For instance, the Global 
Reporting Initiative (GRI), operates as 
an independent international non-
governmental organisation (NGO) and has 
a standardised framework for sustainability 
reporting. Reporting covers greenhouse gas 
emissions, water management, biodiversity 
conservation, environmental compliance, 
and energy consumption. Another 
international example is GlobalGAP, 
originally established by European 
supermarkets, which requires reporting 
on pest management, soil conservation, 
efficient water use, waste management, 
biodiversity protection, energy efficiency, 
and safe chemical usage. 

It is noteworthy that the regulatory and 
non-regulatory (i.e., voluntary) assurance 
systems outlined are often interlinked. For 

Adding extra functionality to 
the environmental intelligence 
platforms
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example, Synlait’s “Lead with Pride” system 
is used to satisfy Environment Canterbury 
requirements for farm environment plans. 
There is a drive to further integration of 
systems to reduce the compliance burden 
on farmers when they may be required 
to provide the same environmental 
information to multiple assurance systems. 
In A-NZ initiatives like the NZ Farm Data 
Code of Practice and the associated Farm 
Data Accreditation Ltd are examples of 
attempts at integration. The need for 
improved integration is illustrated by the 
International Trade Centre Standards Map 
which documents over 300 assurance 
standards related to farming. 

Integration and standardisation are also 
being facilitated at an international scale by 
the emergence of guidelines for standards 
setting in recent years. Notable examples 
include the United Nations Sustainable 
Development Goals (SDGs), the Food and 
Agriculture Organisation Sustainability 
Assessment of Food and Agriculture 
systems, and the International Social and 
Environmental Accreditation and Labelling 
Alliance, which establishes best practice 
processes for building standards. 

Currently, these assurance systems have 
low levels of digitalisation. There remains a 
reliance on traditional or manual methods 
for data gathering and reporting, relying 
on paper-based documentation, basic 
spreadsheets and word processing tools, 
or simple deterministic software. This 
approach contrasts with more advanced, 
integrated digital platforms that offer 
automated, real-time, and comprehensive 
data management, analytics, and reporting 
capabilities. In addition, assurance systems 
primarily use practice-based indicators to 
determine the environmental sustainability 
of farming enterprises – assessments are 
based on how the farmer farms rather 
than on the environmental outcomes of 

their operations. For instance, how they 
manage water, cultivate land, ecologically 
restore areas, or dispose of waste. There is 
little focus, or perhaps ability, to measure 
the direct impacts of a farmer’s practices 
on their farm environment, for example, 
detecting changes in water quality, 
biodiversity, or carbon sequestration. This 
is largely due to the significant expense, 
historically, of undertaking such detailed 
on-farm environmental monitoring.

This situation creates opportunities for 
MACs and iwi with an interest, or intent, 
to build new generation environmental 
sensing platforms. Firstly, they could 
automate their data gathering to report 
against assurance standards that they 
currently need to meet. For instance, 
satellite imagery of a farm could be 
analysed by AI to show changes on farm 
(e.g., riparian planting) and demonstrate 
how farm management plans are being 
implemented to meet FEP or NZFAP 
requirements. Secondly, the types 
of environmental data created by 
comprehensive platforms utilising remote 
sensing, that cover broad areas, could be 
sold to assurance systems providers such 
as government, industry, and NGOs, to 
ascertain the impact of farming practices. 
This would permit these entities to 
understand the actual impacts of the 
farming practices that they advocate for 
and assess farmers by, allowing them 
to accurately determine the connection 
between action and outcome in a process 
of continual learning and improvement. 

Although there is significant potential 
to incorporate advanced environmental 
sensing technologies into assurance 
systems, there are also several challenges. 
One primary obstacle is the need for 
the validation of any new methods, 
that is the need for validation via peer 
reviewed research - as well as acceptation 
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by international assurance governance 
bodies. Apprehension also arises from 
concerns about the disruption of traditional 
methods and practices that have become 
institutionalised. Further complicating 
the landscape are the regulatory and 
procedural delays inherent in the sector. 
Certification bodies, accreditation agencies, 
and standard owners play crucial roles 
in the authorisation of new monitoring 
technologies. Their scheduled review 
timetables can introduce significant 
delays, preventing the swift integration of 
innovative methodologies. Additionally, 
some entities have reservations about 
the efficacy of remote sensing, especially 
in contexts like food safety audits. 
Without clear evidence supporting these 
technologies’ benefits, their widespread 
adoption becomes challenging.

Stakeholder acceptance is another critical 
factor. Key value chain operators, such as 
supermarkets, need to be on-board. While 
many of these actors are enthusiastic and 
keen to demonstrate the sustainability 
of their value chains to retain their 
brand value, the adoption of assurance 
innovations by retailers has, more recently, 
been relatively limited. This indicates a 
potential reluctance to fully embrace these 
new methods. As technology evolves, the 
expertise required of auditors also expands. 
Introducing new technologies often means 
additional training, presenting challenges 
for both auditors and those being audited. 
A further constraint is the sector’s slow pace 
in embracing advanced technologies, often 
attributed to a low level of digitalisation 
and a reliance on older, pre-internet era 
processes. This sluggishness is further 
exacerbated by challenges related to the 
harmonisation of standards and processes. 
Inconsistencies and variations in these 
standards can create barriers for new 
technologies, hindering their mainstream 
acceptance.

The sector’s hesitancy in investing in new 
technologies is another concern. Even as 
innovative solutions in farming emerge, 
their adoption rate in the assurance sector 
remains low, affecting stakeholders’ 
perception of the potential benefits. 

Lastly, the increasing complexity of 
assurance systems, especially for small and 
medium-sized enterprises, introduces a 
range of cultural, capacity, and trust issues. 
These complexities can create significant 
barriers, affecting market access and the 
overall sustainability of operations.

Broadening the design to include 
sustainable finance reporting

KIPs data could be utilised to attract 
sustainable finance investments for MACs 
and iwi land ventures or to offer expansive 
data for to sustainable finance reporting 
companies. While the first approach 
resonates with investors interested in risk 
and positive outcomes, particularly those 
drawn to MACs’ unique attributes, the 
second approach is challenged by the 
intricacies of the sustainable finance realm.

An increasing number of investors, 
including banks, asset managers, and 
entities like sovereign wealth and pension 
funds, are showing a preference for 
investing in eco-friendly companies. This 
shift is driven by growing environmental 
consciousness, potential regulatory 
changes, and consumer advocacy. 
Companies that negatively impact the 
environment are likely to face significant 
challenges in the future. For example, 
in A-NZ, banks with major agricultural 
investments are under scrutiny for the 
environmental effects of their financial 
choices, with a focus on issues like water 
quality and climate change. Recognising 
these challenges, investors are keen to 
understand the environmental implications 
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of their investments. This has led to a 
demand for companies to disclose their 
environmental impact, a process that 
currently relies on manual and time-
consuming data collection. Often, the 
quality of this data is compromised, and 
there is a tendency to focus on company 
practices rather than actual impact. KIPs 
present an opportunity to bridge this gap, 
offering companies a way to provide live, 
accurate and traceable environmental data 
to their investors.

Like the assurance sector, various 
frameworks guide reporting practices. 
Some of these are transitioning to 
mandatory requirements as they become 
embedded in regulations. High-level 
principles serve as general guidelines 
or value sets that outline the essence of 
responsible or ethical investment. These 
principles are typically broad, offering a 
philosophical or ethical base rather than 
detailed action points. Prominent examples 
are the United Nations (UN) Principles 
for Responsible Investment and the 
UNSDGs. In A-NZ, the Stewardship Code for 
Responsible Investors is the predominant 
framework. While it aligns with 
international principles, it also integrates 
local nuances, including Te Ao Māori values.

Global environmental, social, and 
governance (ESG) reporting frameworks 
and standards, grounded in high level 
principles, offer businesses detailed 
guidelines on environmental disclosures 
to lenders, investors, and insurers. These 
frameworks specify metrics, indicators, 
and disclosure norms. For instance, the 
Taskforce on Climate-related Financial 
Disclosures, an industry-driven international 
framework adopted in A-NZ, recommends 
climate-related financial disclosures. 
This is now expanding to include 
biodiversity and other environmental 
factors through the Taskforce on Nature 

Related Financial Disclosures. The Global 
Impact Investing Network introduced 
the Impact Reporting and Investment 
Standards Plus, standardising impact 
measurement in sustainable finance. On 
the inter-governmental front, the UN Global 
Biodiversity Framework Target 15 sets 
nature-related disclosure guidelines, urging 
global governments to mandate reporting 
by 2030. The GRI is another framework 
popular among A-NZ companies, including 
iwi corporations. Drawing on international 
frameworks, A-NZ’s External Reporting 
Board has expanded from setting financial 
auditing standards to incorporate ESG 
codes suited to A-NZ conditions – including 
the incorporation of Te Ao Māori concepts. 

Secondary verification frameworks and 
ratings entail third-party evaluations of 
ESG performance. In A-NZ, the Responsible 
Investment Association Australasia 
(RIAA) Product Certification Standard 
benchmarks responsible investment 
products, emphasising transparency and 
ESG integration. Certified entities can 
display the RIAA certification symbol, 
denoting their commitment to responsible 
investment. The Gold Standard is another 
prevalent certification for climate 
mitigation projects in A-NZ, ensuring 
genuine and verifiable carbon credits.

Niches and market creation pinpoint 
specialised ESG sectors, often birthing 
new investment avenues. In A-NZ, several 
niches could benefit from a Māori-led 
environmental intelligence platform. For 
example, the Sustainable Agriculture 
Finance Initiative, developed by A-NZ 
banks, guides sustainable agriculture 
and structures Sustainable Linked Loans. 
The A-NZ Climate Innovation Market, 
overseen by Toha, promotes sustainable 
farming investments, with farmers sharing 
environmental data for financing. New 
Forests is a global investment manager 
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focusing on nature-based assets. Tahito 
integrates Māori values into its ESG 
investment strategy, mainly for positive 
screening in the Te Tai o Rehua Fund. The 
voluntary carbon market in A-NZ features 
entities like Ekos and Toitū Envirocare, offer 
carbon certifications and broker carbon 
credits. Platforms such as Carbon Crop and 
Carbonz also specialise in native carbon 
credits and facilitate their trading.

Based on interviews with different 
stakeholders in the sustainable finance 
sector it has been determined that there 
is demand for the types of data that 
environmental intelligence platforms 
could provide for disclosure purposes. 
Furthermore, such demand is likely to 
grow. A-NZ banks’ lending to farmers see 
the potential data generated as a tool 
that could determine the transitional or 
physical risk of their investments and to 
monitor business operation improvements, 
especially in the context of ‘sustainability 
linked loan’ products. Direct equity investors 
could also leverage data to understand risks 
associated with land, water, and climate 
impacts, aiding in investment decisions, 
and facilitating engagement with the 
businesses they invest in. Impact investors, 
focused on specific environmental 
outcomes, could also use the data to 
quantify their investment impacts. While 
these environmental intelligence platforms 
would primarily offer environmental 
data, entities using it would still need to 
address social and governance reporting 
for comprehensive ESG performance. A-NZ 
is a signatory of the Global Biodiversity 
Framework, the demand for nature-
sensitive production systems, verifiable by 
KIPs monitoring, is anticipated to grow, 
underscoring the platform’s significance 
in the evolving landscape of sustainable 
finance.

However, realisation of the full potential 
of these platforms in the finance sector 

faces several challenges. The evolving 
nature of data infrastructure necessitates 
interfaces that can handle high-resolution 
data across various scales, from individual 
farm levels to entire supply chain footprints. 
Globally, there is an inconsistency 
in ESG measurements, with certain 
environmental data, such as biodiversity 
and nutrient emissions, still in nascent 
stages of standardisation. Research across 
frameworks show that few have reporting 
requirements at the metric level, focusing 
at the higher indicator level. This poses 
barriers to the automation of data flows 
crucial for financial decision-making. 
Stakeholders have also expressed concerns 
about potential ‘data overload’, emphasising 
the need for data that provides actionable 
insights. Furthermore, the rapid evolution 
of the ESG sector introduces uncertainties 
about future finance-related decision 
frameworks. While there is an anticipated 
increase in demand for transparent, high-
resolution data, the exact nature of future 
demands and the frameworks to address 
them remain in development.

Broadening the design to meet  
the needs of consumers wanting  
the credence attributes of 
indigenous products

Gathering precise information about the 
environmental condition of their farms 
and forests could allow MACs to add 
value to their food and fibre products. 
Many consumers are willing to pay more 
for products with certain ‘intangible’ 
credence attributes - e.g., sustainable 
production, food safety, fair trade etc. – 
that are not immediately apparent from 
the product itself. A platform based on 
indigenous values also adds a cultural 
point of difference which emphasises 
the environmental and social ethics 
underpinning Māori production practices. 
Such cultural attributes have been 
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identified as factors that can command 
premiums in certain markets alongside 
environmental and social attributes. By 
communicating these attributes in a 
verified and authentic manner to the 
right consumers, Māori producers can 
potentially achieve higher prices for 
their products. There are three critical 
components to adding value in this way: 
establishing the credence attributes that 
emerge from tauutuutu production and 
aligning these with international analogues; 
understanding how these attributes can be 
communicated in a verified and authentic 
way; and identifying the consumer markets 
that are willing to pay the most for these 
credence attributes and what premiums 
they would pay. 

There are several important credence 
attributes that emerge from Māori 
production guided by tauutuutu values. 
These are based on the core principles of 
Te Ao Māori and mātauranga, with the 
most critical being kaitiakitanga (actively 
guarding and enhancing ecosystems), 
rangatiratanga (showing leadership and 
self-determination), and whanaungatanga 
(nurturing wellbeing and relationships). The 
focus of these both being the maintenance 
and growth of mana and mauri of humans 
and ecosystems through the relational 
interactions. Through analysis, a range 
of similar or proximate, internationally 
recognised, credence attributes were 
determined that would enable the 
identification of the best markets and the 
premiums they would pay. These include: 
kaitiakitanga – sustainable production, 
organics, animal welfare, and food safety; 
rangatiratanga – food sovereignty, country 
of origin, local foods, alternative food 
networks; whanaungatanga – fair trade and 
human values. 

The demand for credence attributes has 
grown significantly in recent decades, 
driven by the industrialisation of food 

production, cases of food adulteration and 
duplicitous marketing, and resulting food 
scares and environmental crises. Many 
consumers now seek healthy, safe, ethical, 
and sustainable products. At the same time, 
most people have lost connection with 
their food as it has become a commodity 
‘from nowhere’ that simply appears in their 
supermarkets. This has led consumers to 
look for authentic associations with food 
types, geographical locations, production 
methods, and producers, particularly 
producer cultures. Knowing where 
your food comes from and trusting this 
information have become increasingly 
important for both practical and emotional 
reasons. Critically, because of the loss of 
trust amongst consumers and the fact that 
credence attributes are not distinguishable 
at point of purchase, ensuring consumers 
believe these claims requires verification. 
This can be achieved using either: 1. tracing 
schemes, which enable the consumer to 
track the product back to its origin; or 2. 
assurance schemes, which are trusted 
third party actors that can verify the 
accuracy of claims. These both require the 
collection, verification, and communication 
of salient data, making the collection of 
comprehensive on-farm environmental data 
of high value for MACs. Both these fields 
are undergoing several improvements. 
Advanced technologies like the blockchain, 
Internet of Things, and radio-frequency 
identification allow food producers to record 
every step of the production process for 
tracing schemes, though as noted in the 
previous section, assurance schemes have 
not adopted new technology as quickly. 
Environmental data collected with a cultural 
frame can deliver practical and emotional 
authentication. 

Willingness-to-pay (WTP) studies are 
the most common mechanism for 
determining the possible premiums paid 
for credence attributes, though these are 
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more frequently deployed in an academic 
setting than by commercial actors and 
are often focused on a single credence 
attribute for a single product in a single 
market. WTP studies generally involve 
surveying population segments, and thus 
measuring hypothetical rather than actual 
WTP, reducing their accuracy. Still, WTP 
studies can help Māori enterprises identify 
the best markets and the key attributes 
that resonate with these markets and align 
their products accordingly to achieve a 
price premium. A thorough review of WTP 
studies, found in the feeder report, provides 
a range of insights. The data highlights 
differences in WTP for credence attributes 
across various regions, with consumers from 
Southern and Western Europe exhibiting 
higher WTP compared to other regions, 
including North America and Asia. The data 
also provide other demographic insights, 
showing for example, that younger female 
consumers generally display higher WTP 
values for credence attributes. The data 
offers a range of insights regarding possible 
premiums paid for different credence 
attributes, with some such as food safety 
accessing up to 64% premiums.

However, the analysis shows significant 
variation across studies for the same 
credence attribute, which suggests that 
the data gleaned from these is indicative 
at best. Also, because these studies are 
often very specific in terms of products/
credence attributes but also very broad 
regarding demographics they are not 
necessarily easily translatable or targetable, 
respectively. For this reason, a number of 
complementary methods for determining 
WTP have been proposed, including: 
collecting and analysing transaction data 
from retailers and e-commerce platforms 
selling Māori products; analysing social 
media data for insights into consumer 
sentiments, emerging trends, and popular 
product attributes; examining online 

reviews and ratings of Māori products on 
various e-commerce platforms, blogs, 
and forums; using market basket analysis 
to determine the purchasing patterns 
of consumers who buy Māori products 
in conjunction with other products; and, 
conducting a comprehensive review of 
existing studies and databases (other 
than WTP studies) related to consumer 
preferences for food products.

Numerous indicator frameworks could 
be used by enterprises to measure and 
communicate MACs performance against 
credence attributes. The precise metrics 
to be used would depend on the context 
of the enterprise; for example, a dairy 
farmer would require different metrics to 
a dryland farmer. At a high level, several 
well regionalised frameworks, some of 
which have been outlined above, could 
be used, such as: GRI Standards; SDGs 
Indicators; International Organization for 
Standardization Standards; B Corporation 
Certification; Fair Trade Certification; 
Rainforest Alliance Certification; SA8000 
Standard. These standards face the same 
issues outlined in the assurance system 
section above. 

There is a current need for higher quality 
and more reliable data to communicate 
and verify credence attributes. The data 
gained from the environmental intelligence 
platforms can be aggregated in ways 
needed to suit what might be termed 
different ‘credence clusters’ of specific 
market segments and can provide a highly 
verifiable form of traceable information that 
can be communicated with authenticity to 
the consumer. Likewise, it can be aligned 
with the different national and international 
frameworks needed to deliver assurance 
through the variety of different schemes. 
The key is accurately determining these 
credence attributes and markets, so the 
alignments can be made with a high 
fidelity. 
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Types of metrics sought 
by MACs, iwi, assurance 
systems, sustainable finance 
and markets
Earlier, it was outlined that many 
MACs and iwi organisations use a 
combination of traditional knowledge and 
modern scientific methods to evaluate 
environmental health and changes 
on their lands. Mātauranga, which is 
holistic knowledge accumulated over 
generations through observation, hands-
on experimentation, and intuitive insight, 
is focussed on the relationships and 
interconnectedness between the different 
elements that make-up the environment. 
In comparison, scientific methods isolate 
and measure the biophysical properties 
and components of environmental systems, 
using scientific instruments, to reveal 
changes in their health. Mātauranga also 
may not identify specific environmental 
signs, such as the absence or presence 
of a species, to determine environmental 
health, it is just that this is done in reference 
to broader environmental patterns, flows, 
and cycles using a whakapapa orientation 
and relational values and not isolated 
variables. While science can look at parts 
of the system it has difficulty measuring 
and explaining, it is missing all the complex 
interactions between the parts. MACs 
and iwi find scientific measures useful, 
however, they are used within a broader 
frame of cultural reference. Understanding 
what biophysical measures these entities 
find useful is crucial to determining which 
environmental sensing technologies 
are incorporated within a KIP, and more 
broadly what metrics can be incorporated 
into mātauranga Māori oriented 
frameworks.

MACs and iwi from literature review 
and analysis

In the feeder report to this report, 
‘Determining the environmental 
intelligence needs of Māori Agribusiness 
Collectives (MACs) and iwi to inform the 
design of a Kaitiaki Intelligence Platform’, 
(see feeder report here) a detailed review 
and textual analysis was undertaken of 
Māori Environmental Frameworks, Māori 
Wellbeing Frameworks, and MACs and 
iwi strategic documentation. Based on 
this analysis a set of biophysical indicators 
and metrics commonly used by Māori 
authorities were identified. In total, seven 
indicators (Table 1) were distinguished 
under which 25 metrics were categorised. 
Qualitative indicators were excluded 
from this analysis, given qualitative 
methods are required to generate this 
data, which environmental sensors are 
unable to capture. However, this is not to 
dismiss qualitative data, such data may 
be incorporated and built into reporting 
systems to augment quantitative data as is 
commonly done by Māori authorities.
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Table 1:  MACs and Iwi biophysical data needs: Indicator and  
Metric categories (*Agricultural production specific).

In
d

ic
at

or
s

Terrestrial 
Biodiversity

Water 
Quality 
and 
Quantity Soil Quality

Water use 
Efficiency/
Management*

Stock 
Management*

Greenhouse 
Gases

Nutrient 
Loading

M
et

ri
cs Native 

Habitat

Species 
diversity

Taonga 
Species

Presence/
absence of 
pest and 
weed species

Riparian 
Planting

Nitrates

Phosphates

Turbidity

pH

Species 
diversity

E. coli

Taonga 
Species

Surface flow 
rates

Erosion

Compaction

Moisture 
Levels

PH

Heavy metals

Microbial 
density and 
diversity 

Levels of N 
and P

Soil moisture 
levels

Ground water 
quantity

Surface water 
flows 

Paddock lines

Stock numbers 

Emissions 

Sequestration

Levels of 
N and P in 
soils and 
groundwater

Collaboration partners’ metrics

In addition to the literature review, the 
KIPs research also engaged with iwi and 
MACs collaboration partners (CPs) to 
identify the key metrics to be incorporated 
within a KIP platform design through a 
series of workshops. The CPs reiterated 
the findings of the literature review 
identifying the same set of metrics. The 
agricultural CPs emphasised the need 
for environmental data that also acted as 
operational data for improving farming 
practice and performance, while measuring 
any environmental improvements. This 
included data on soil nitrate and phosphate 
levels in conjunction with soil moisture to 
optimise fertiliser regimes and minimise 
environmental impact. In relation to soil, 
there was interest in accessing data on 
soil microbial density and diversity. In 
terms of stock management, CPs wished 

to be able to count and monitor stock 
movements remotely as well as locate and 
measure paddock lines. Finally, data on pest 
management was sought, in particular, 
detecting wildling pines and being able 
to determine the presence and absence 
of possums and deer based on the health 
of native ecosystems – for example, being 
able to measure the density of forest 
canopies and understorey.  Beyond iwi, CPs 
also sought unique measures including 
data concerning flood risk to land and 
communities, wāhi tapu, and wāhi taonga, 
and archaeological sites.

Metrics from assurance, sustainable 
finance, and markets

As outlined in previous sections, there is 
an opportunity for MACs and iwi to provide 
assurance and sustainable finance sectors 
with biophysical data, first as a commercial 
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opportunity to provide verification services 
and access favourable financing, and 
second as a means for MACs to automate 
their own environmental reporting to these 
entities. Consequently, a detailed literature 
review, and 40 interviews with a wide range 
of stakeholders across the assurance and 
sustainable finance sectors was undertaken 
to identify the types of biophysical impacts 
metrics these sectors are seeking (see 
feeder reports for assurance here and 
sustainable finance here). However, few 
hard environmental metrics were identified 
as being sought or prioritised by these 
sectors – apart from GHG gas emissions. 
Most environmental auditing and reporting 
systems used in these sectors rely upon 
practice-based indicators – that is, relatively 
subjective assessments of the practices 
farmers, foresters, or other land managers 
are employing that are known to generate 
positive environmental outcomes on the 
ground.  Generally speaking, there is a lack 
of direct objective environmental impact 
monitoring across these sectors. However, 
the analysis also revealed that there is 
potential to integrate direct environmental 

impact monitoring into these systems. This 
integration, however, comes with certain 
challenges due to institutional rigidity and 
a resistance to adopting new approaches 
within these sectors. Furthermore, many 
auditing systems in this sector only offer 
overarching guidelines and general 
environmental indicators. Nonetheless, 
the general environmental indicators 
identified align closely with the indicators 
sought by MACs and iwi (Table 2). Overall, 
there appears to be opportunities for a KIPs 
platform to generate data against these 
indicators using the biophysical metrics 
considered important by MACs and iwi.

Summary of biophysical metrics 
applicable across organisation type 
and sectors

Based on the analysis above, Table 2, 
outlines the types of biophysical metrics 
that are sought MACs and Iwi. Table 2 also 
indicates that these same metrics have the 
potential to be incorporated into market 
assurance and sustainable finance auditing 
systems. 

Table 2: Biophysical indicators sought by sectors
MACS IWI ASSURANCE SUSTAINABLE FINANCE

ENVIRONMENTAL INDICATORS

Terrestrial biodiversity Y Y Y Y

Water quality and quantity Y Y Y Y

Soil quality Y Y Y

Water use efficiency/management Y Y Y Y

PRODUCTION INDICATORS

Stock management Y Y Y

Greenhouse gases Y Y Y

Nutrient loading Y Y Y
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Explaining and defining the 
technology

In this section, the technologies designed 
to generate the types of environmental 
data sought by MACs and iwi is explored. 
Understanding these technologies, and the 
terminology surrounding them is needed, 
which is provided below, before exploring 
the application of these technologies in a 
sensor network tailored to Māori authorities. 

In-situ Sensors

An in-situ sensor is a type of environmental 
sensor deployed directly at the location 
where data needs to be collected17. Types of 
in-situ sensors include soil moisture sensors, 
nutrient sensors, water quality sensors, 
air quality sensors, weather stations, and 
biodiversity sensors. The cost of these 
sensors has fallen dramatically due to 
technological advancement and economies 
of scale. Now many of these types of 
sensors are solar powered and connected 
to the internet and transmit real time 
data regarding environmental conditions. 
Together these are referred to as Internet of 
Things (IoT) sensors18.

Soil moisture sensors are crucial tools for 
improving environmental outcomes by 
aiding in water conservation, preventing 
over irrigation, and mitigating drought 
impacts19. By measuring soil moisture 
levels, farmers can optimise irrigation 
practices, reduce water wastage, and 
promote sustainable water use. Integrating 
these sensors with nutrient sensors helps 
minimise nutrient runoff and groundwater 
contamination. Overall, maintaining 
optimal soil moisture levels enhances crop 
and pasture health, preserves soil structure, 
and reduces soil degradation20. 

Water quality sensors monitor key 
indicators such as pH, dissolved oxygen, 
nutrients, suspended sediments, and other 

pollutants in water bodies. By identifying 
potential sources of contamination, land 
managers can take appropriate measures 
to reduce runoff and prevent harmful 
substances from entering waterways thus 
minimising water pollution21. 

Weather stations produce real-time 
weather data that allows farmers to 
optimise irrigation, crop planning, and pest 
management, promote water conservation 
and reduce pesticide use. Long-term 
weather trends inform climate-resilient 
practices, while monitoring weather 
patterns helps with erosion control22. 

Air quality sensors monitor air pollution 
levels, enabling better environmental 
management and safeguarding human 
and animal health. A range of polluting 
gases can be sensed including carbon 
dioxide and methane – both of which are 
greenhouse gases23.

On-ground biodiversity sensors play a 
crucial role in biodiversity monitoring 
and conservation efforts. These advanced 
technologies include camera traps to study 
animal behaviour and population dynamics, 
acoustic sensors for assessing species 
presence, environmental DNA (eDNA) 
sensors for identifying species presence and 
abundance in water bodies, soil, forests, and 
farmland24. 

Remote Sensors

Remote environmental sensing involves 
the use of various technologies to collect 
data about the health of land, water, and 
air from a distance, without direct physical 
contact. There are a range of remote 
environmental sensors that are mounted 
to unmanned aerial vehicles (UAVs or 
drones), manned aerial vehicles (planes 
and helicopters), and satellites. The cost 
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and availability of this remote sensing 
technology, particularly regarding UAVs 
and satellites, has dropped dramatically 
in recent years. In terms of UAVs, the 
emergence of smaller and more efficient 
sensors, cameras, batteries, and processors, 
combined with advances in AI and 
economies of scale, has driven this change. 
Similarly, satellite technology has improved 
dramatically through miniaturisation, 
alongside cheaper manufacturing and 
launch options – seeing a ubiquity of 10 
cm2, 2 kg3 satellites produced. Moreover, 
sensor improvement and AI advancements 
have greatly increased data resolution. 
Additionally, longer satellite lifespans 
and increased government and private 
funding have contributed to cost savings 
and affordability25. The use of planes 
and helicopters remains expensive, or is 
increasing in expense, though there are 
options to utilise existing commercial flights 
to house remote sensors which cuts costs 
significantly. However, they can carry larger, 
heavier sensors than UAVs and satellites 
that generate higher resolution data26. 

There are various types of sensors 
carried by these vehicles that generate 
different types of useful data. Optical 
sensors capture visible and infrared 
light, enabling land cover classification 
and monitoring vegetation quantity and 
health27. There are two main types of optical 
sensor: multispectral and hyperspectral. 
Multispectral sensors provide data in 
specific non-contiguous wavelength 
bands, with band combinations varying 
depending on requirements. Hyperspectral 
sensors allow detailed spectral analysis 
across contiguous spectral bands. 
Multispectral imaging can be thought 
of as a reduced subset of hyperspectral 
imaging. Optical data permits assessment 
of plant biodiversity, plant health and 
stress (including early signs of disease and 

nutrient deficiencies) and algae levels in 
water bodies28. 

Thermal cameras measure the heat 
signature of different objects by detecting 
the amount of infrared energy they 
produce. These cameras can be particularly 
useful to see below forest canopies at 
potential animals below; more so when 
an optical camera cannot see through the 
canopy. Providing data on the temperature 
patterns of vegetation enables areas of 
stress or damage caused by pests, diseases 
to be identified29. 

Synthetic Aperture Radar (SAR) sensors 
utilise microwave radar to produce high-
resolution images, crucial for all-weather 
and day-and-night imaging. This makes 
SAR essential for monitoring land use 
changes, agriculture activities, and 
detecting surface deformations, supporting 
precision agriculture and disaster 
management in rural areas30. 

Microwave and Radiometer sensors 
estimate soil moisture levels and monitor 
ice conditions, essential for rural land 
managers to manage water resources 
efficiently, particularly during droughts, and 
assess potential frost damage to crops31. 

LiDAR (light detection and ranging) 
sensors employ laser pulses to create 
precise 3D elevation maps of the Earth’s 
surface, enabling terrain mapping and 
biomass analysis. Data generated from 
LiDAR can be used for optimising land use 
planning, implementing contour farming, 
and analysing vegetation structure in hilly 
or forested areas to determine levels of 
biomass, carbon, and canopy thickness32. 

GNSS-R (global navigation satellite systems 
reflectometry) sensors use reflected 
signals from navigation satellites to gather 
information about soil moisture and 
vegetation. This data enables assessments 
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of soil moisture levels, water availability, and 
making informed decisions for irrigation 
and water management, especially in 
regions with limited access to ground-
based monitoring33.

GPS Radio Occultation (GPS-RO) sensors 
measure the refractivity of Earth’s 
atmosphere, providing valuable data for 
weather forecasting and climate studies. In 
rural areas, accurate weather predictions 
are crucial for planning agricultural 
activities, optimising resource use, and 
mitigating weather-related risks34.

Combining In-situ and remote 
sensors

In environmental sensing, both in-situ 
and remote sensors play crucial roles, 
each offering advantages and working 
together to generate a comprehensive 
understanding of the environmental 
conditions. In-situ sensors serve a pivotal 
role in calibrating remote sensors, refining 
their accuracy and improving data quality 
over time35. Analogous to tuning a musical 
instrument to a specific key, in-situ sensors 
fine-tune remote sensors to enhance their 
performance. Generally, in-situ sensors 
produce more accurate data since they 
are positioned at the source, providing 
high-resolution measurements at specific 
locations. However, remote sensors can 
rapidly cover vast areas, generating data 
over entire landscapes, which would be 
impractical to be done with in-situ sensors 
without significant investment costs. To 
maximise data coverage and resolution, 
both in-situ and remote sensors are 
valuable tools that should be viewed as 
complementary36. Data from both types 
of sensors can be integrated and fused to 
create comprehensive datasets, harnessing 
the strengths of each method. Nonetheless, 
as technology advances, remote sensors 
are becoming increasingly accurate, and 

there are many situations where they could 
eventually replace in-situ sensors. However, 
it is important to recognise that in-situ 
sensors may remain indispensable for 
localised studies and long-term monitoring 
efforts, which may not be practical with 
remote sensing alone. 

Making sense of data – warehousing 
and analysing data

The range of sensors outlined above 
can collect a prodigious amount of 
environmental information. Storage of such 
large quantities of unstructured data can 
be problematic, however, the exponential 
growth in data warehouses that store 
data is managing to keep up with this 
challenge. The data also needs structuring, 
where it is cleaned and transformed 
into a standardised format to ensure its 
quality and consistency. Data warehouses 
are optimised for querying and analysis, 
allowing users to perform complex queries 
and generate meaningful insights from 
historical and current data37.

Māori data sovereignty is also an important 
consideration. Generally speaking, this 
recognises that Māori data should be 
subject to Māori governance38. Māori data 
sovereignty supports tribal sovereignty 
and the realisation of Māori and iwi 
aspirations. As data collection has grown 
in size and scope, the issue of how this is 
managed and governed has grown for 
indigenous peoples. Many iwi and hapū 
have developed policies, governance 
structures, and warehousing capacity, with 
layers of encryption protecting this data. 
More broadly, there is the Māori-operated 
network, Te Mana Raraunga39, formed 
in 2016 to advocate for Māori rights and 
interests in data to be protected, while 
references to the Treaty of Waitangi have 
been incorporated into the Data and 
Statistics Act 202240. It will be up to each 
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participating MAC and iwi to develop their 
own warehousing and analysis protocols 
and practices, though the project will 
also seek to provide a range of potential 
solutions that align with the broader Māori 
data sovereignty principles.

The rapid development in AI is 
revolutionising data analysis. AI excels 
at mining raw data, spotting intricate 
patterns, and uncovering hidden insights 
that may elude human analysts, and in far 
shorter time periods. AI can also automate 
the data structuring process through 
classification, feature extraction, and 
predictive modelling, providing valuable 
insights for environmental monitoring, 
climate modelling, biodiversity analysis, and 
resource management41,42,43. Additionally, 
AI-powered data analytics can facilitate 
real-time decision-making to address 
environmental challenges with more 
precision and effectiveness. Finally, AI 
systems continually learn from new data, 
progressively enhancing their analytical 
abilities over time44. As big data volumes 
expand, AI algorithms become more 
accurate and efficient in their analyses.

Communicating data

There are a number of current and near 
horizon methods of communicating this 
data in ways that are able to condense the 
preponderance of information into easily 
comprehend forms, and offer a range 
of potential visualisation methods that 
can be aligned with Te Ao Māori. These 
are presented in order of cost, ease of 
deployment, and current viability, from 
cheapest, easiest and viable first. 

Geographic Information Systems (GIS) 
are computer programmes that create, 
manage, analyse, and map geographically 
referenced information, using layers of 
data that are attached to unique locations 

to build a tailored interface the user can 
explore and alter45. Generally speaking, 
GIS overlays these different datasets onto 
some form of 2D or 3D map, though only 
the terrain data is usually displayed in three 
dimensions. GIS can show many kinds of 
data on one map, such as biodiversity levels, 
water quality, and nitrate levels. This enables 
the user to not only explore each dataset in 
isolation but also to identify and understand 
patterns, relationships, and geographic 
context between the different datasets. GIS 
can be used to identify problems, monitor 
changes, manage and respond to events, 
perform forecasting, set priorities, and 
understand trends. As a well-established 
system, GIS has numerous existing datasets, 
interfaces, and plugins that can be relatively 
cheap, or freely, utilised to enhance 
communication to specific stakeholders46. 
There are also a number of geospatial data 
sources of high relevance for a wide variety 
of kaupapa Māori GIS mapping projects 
available. 

An environmental digital twin Is a digital 
replica of a physical entity or system. It is like 
GIS in many respects, with GIS technology 
foundational to the development of 
an environmental digital twin. The key 
difference is that the digital twin is dynamic, 
merging as many individual datasets as 
possible into a singular representation 
that aims to mirror its real-world twin as 
effectively as possible not just spatially but 
also chronologically, covering processes 
and relationships47. Digital twins go beyond 
simulation, as they replicate a system’s 
various processes, creating a virtual 
environment that has a greater alignment 
with reality than a simulation. They are 
even more sophisticated than traditional 
environmental models, as while models 
only use environmental data to calibrate 
digital twins have data inputted in either an 
ongoing basis or constant feed. The digital 
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twin concept is newer than GIS, emerging 
out of engineering and manufacturing, 
with the ‘twin’ concept coined during the 
Apollo programme – in this case, literally a 
second physical copy left on Earth – and the 
‘digital’ element being added in the 2000s48. 
Nevertheless, much like GIS, there exists 
several off-the-shelf resources that can be 
utilised for the construction of a digital twin 
for MACs and iwi. 

Extended reality (XR) has been around for 
a long time though the technology is only 
just coming to maturity, with the latest 
generations of visors and their underlying 
software delivering on its long-held 
promise. XR encompasses both virtual and 
augmented reality, where virtual reality 
replaces your vision with 3D graphics, 
augmented reality adds 3D graphics 
over the top of your field of view. The 
immersive nature of XR can help bring the 
environmental data to life in a visceral and 

emotional way that other methods cannot. 
People can move through and interact 
with the data, experiencing in a range of 
ways from an on-the-ground first person 
experience to a god-like third person view 
high above. Research has shown that this 
type of experience can deepen the impact 
and understanding of environmental data 
for users, helping connections with nature, 
increasing awareness of sustainability 
issues, and guiding decision-making. 
Currently, it is one of the more costly 
options for communication, both in terms 
of headsets and software, though prices 
will drop over time49. While there are less 
general and specifically Māori resources for 
XR than the other methods, these will grow 
over time. 

The rapid development in AI is revolutionising data 
analysis. AI excels at mining raw data, spotting 
intricate patterns, and uncovering hidden insights 
that may elude human analysts, and in far shorter 
time periods. AI can also automate the data 
structuring process through classification, feature 
extraction, and predictive modelling, providing 
valuable insights for environmental monitoring, 
climate modelling, biodiversity analysis, and resource 
management. Additionally, AI-powered data 
analytics can facilitate real-time decision-making 
to address environmental challenges with more 
precision and effectiveness.
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Technology to generate 
and communicate the data 
MACs and iwi need 

The Kaitiaki Intelligence Platform36

This section outlines how the technologies 
explored above are applied in practice to 
meet the environmental data needs of 
MACs and iwi. Many of these approaches 
have been tested and developed overseas, 
however some are not yet available in A-NZ 
or are yet to be applied. Consequently, it is 
also discussed whether the technology is 
available, or applied in the A-NZ context. 
For a detailed and referenced version of 
available technologies, please see the 
Kaitiaki Intelligence Platform report: 
'Designing a comprehensive sensor 
network to provide Māori Agribusiness 
Collectives and iwi environmental 
intelligence'.

Detecting Biodiversity

There are different types of in-situ sensors 
that have been developed to detect the 
presence, absence, and numbers of species 
in a location – this includes desirable native 
species as well as pests. Acoustic sensors 
are instrumental in monitoring animal 
vocalisations, sounds, and even microbial 
activity in soils50. In parallel, camera traps, 
which are motion-activated cameras, have 
gained prominence for their ability to 
capture images of animals as they traverse 
their habitats. Complementing these are 
thermal imaging cameras, which harness 
the capability to detect the heat signatures 
emitted by organisms. This feature renders 
them invaluable for identifying animals 
during night time or within densely 
vegetated areas51. These detection options 
are useful as the presence (or lack thereof) 
of wildlife is an indicator of a healthy 
ecosystem, or successful ecosystem 
regeneration. Another innovative approach 
to biodiversity detection is the use of eDNA 
sensors. These devices are unique in that 
they can provide in-situ, real-time

monitoring of organism presence in a 
specific environment; they have been 
shown to be successful in mediums such as 
water and soil24. Lastly, the assessment of 
soil health and microbial diversity 
is indirectly facilitated by soil sensors. These 
devices gauge various parameters, 
including soil moisture, temperature, and 
pH that are indirectly indicative of the 
underlying diversity in microbial activity52.

There are various remote sensors designed 
for biodiversity detection, with a primary 
emphasis on vegetation. Optical, 
multispectral, and hyperspectral cameras 
record the spectral reflectance of 
vegetation across the visible and invisible 
spectrums–- including both desirable and 
undesirable plant species (i.e., weeds)53. 
Different ecosystems have their own 
spectral signatures; for instance, forests, 
wetlands and grasslands can be 
differentiated27. Combining such data with 
LiDAR, allows for plant species 
identification, as the 3D approach 
incorporates canopy height 
and underbrush density32. In turn, this 
combination can help to identify stages 
of ecological succession. GNSS-R sensors 
that pick-up reflected signals from 
navigation satellites offer an additional layer 
of identification data; these aeroplane 
mounted sensors detect soil moisture levels 
and water availability, which make this data 
source particularly useful for detecting 
wetland ecosystems54.

Since applications for data are so varied, 
most sensors output data in a raw format 
that then requires some level of processing. 
While historically such analysis has been 
challenging, advancements in AI have 
revolutionised the process of ecosystem 
identification and species differentiation. AI 
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models are now trained to identify specific 
features, leading to the creation of what 
are termed “biodiversity signatures”55. In 
such applications, and where data sources 
like LiDAR and spectral sensors are used, 
the model efficacy is improved with 
increased data resolution. Typically, this 
resolution is inversely proportional to the 
distance of the sensor from the Earth; 
sensors closer to the surface, such as 
drones, capture higher resolution data in 
comparison to satellites at greater 
distance56. Such high-resolution data 
facilitates AI in crafting signatures for 
individual species more accurately. While 
high-quality satellite images can also serve 
this purpose, they are optimally utilised for 
training AI to recognise broader ecosystem 
signatures. The latter is also less computer-
resource heavy, thus there is merit in 
combining data sources with various 
resolutions, particularly if analysis is sought 
on a large area of land57. 

The ability to detect ecosystems and 
species across vast landscapes offers 
multifaceted insights into biodiversity 
assessment. One primary advantage is the 
capability to monitor changes in the size 
and extent of ecosystems over time–- 
identifying whether they are expanding or 
contracting58. The latter can be an indicator 
of biodiversity loss, since specific 
ecosystems provide habitat for specific 
species, and their success is closely linked 
to ecosystem size. Another benefit of the AI 
modelling approach is the ability to 
evaluate the connectivity between 
different ecosystems. This connectivity is 
crucial as many species’ survival rely on 
corridors 
for their natural behavioural patterns59. 
Additionally, understanding the structure 
of ecosystems, such as the density of forest 
canopies and understories, provides 
valuable information about the 
ecosystem’s health. For example, over-
browsing in a forest might indicate the 

presence of pests, while under-browsing 
could suggest the absence of a certain 
beneficial species. 

Lastly, the absence or presence of specific 
flora, or lack thereof, serves as an indicator 
of an ecosystem’s overall health. The 
absence of a signature species, perhaps 
identified through its unique annual 
flowering pattern, could signal that an 
ecosystem is facing challenges60.

Availability of technology in Aotearoa New 
Zealand

The Eco-index in A-NZ operates a platform 
(nearing completion in 2024) that can 
detect changes in ecosystems extent over 
time utilising optical and hyperspectral 
satellite imagery, plane mounted GNSS 
reflectometry, and LiDAR. It is building 
a range of biodiversity signatures for 
vulnerable ecosystems and species; 
that enable assessments of biodiversity 
presence and status at farm and 
catchment scales.

Detecting Nutrients and Microbial 
Diversity in Soil and Water

In terms of determining microbial diversity 
and quantity in soil and water, eDNA 
sampling is currently the most detailed 
approach with the ability to find thousands 
of unique DNA variants in a single sample24. 
In regard to nutrient detection there are 
a range of in-situ sensors designed for 
this purpose, principally for detecting 
nitrogen and phosphorus in soils and water, 
offering insights into nutrient cycling and 
environmental health. Ion-Selective 
Electrodes (ISEs) respond selectively to 
specific ions, such as nitrate or phosphate, 
making them popular in portable metres 
for field measurements19. Optical sensors, 
leveraging light absorption or fluorescence 
properties, can detect these nutrients, with 
UV absorption being particularly effective 
for nitrate detection in water61. Colorimetric 
sensors identify nutrients based on their 
colour-changing reactions 
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with specific reagents, while techniques like 
Near-Infrared (NIR) and Mid-Infrared (MIR) 
spectroscopy assess organic and inorganic 
nutrient forms by analysing light absorption 
and reflection patterns21. Lysimeters, which 
collect water from soils, offer insights into 
nutrient movement within the soil profile. 
Automated samplers, stationed in water 
bodies, periodically collect samples for 
nutrient analysis62. Additionally, microbial 
biosensors utilise microorganisms, such as 
bacteria, that produce measurable signals 
when exposed to target nutrients63. Some 
Time Domain Reflectometry (TDR) probes, 
primarily used for soil moisture, can also 
detect nitrates based on their impact on 
soil dielectric properties64. Lastly, absorption 
and fluorescence probes in water bodies 
detect nutrients based on their specific 
light-related characteristics65. While these 
sensors provide valuable real-time data, 
they often benefit from validation through 
laboratory analyses.

The ability to detect nutrients remotely 
is more challenging; however, a suite of 
techniques and approaches have emerged 
in recent years that are showing similar 
levels of accuracy to in-situ sensors. In a 
similar manner to biodiversity detection, 
hyperspectral cameras can reveal subtle 
changes in the chlorophyll of vegetation, 
which indicate the levels of nitrates and 
phosphates within the root zones of 
plants66. AI is then used to pick-up on 
these patterns and generate soil nutrient 
signatures based on the reflectance 
patterns of different plant species, such 
as pastures and crops. These patterns 
change over seasons, which also needs 
to be factored into analysis and can be 
accommodated with a temporal AI model67. 
The benefit of using remote sensing is that 
it enables nutrient detection across whole 
landscape areas and does not require the 
significant number of expensive in-situ 

sensors that would be required to achieve 
the same task. Furthermore, such broad 
scale monitoring enables nutrient ‘hotspots’ 
to be identified. This approach can also be 
used to detect soil pH as the reflectance 
and types of vegetation can change with 
soil acidity or alkalinity by using remote 
sensing to pick up on the vegetation indices 
generated by a change in pH and merge 
the finding with soil maps of an area68. This 
combination of data can create a prediction 
map of soil pH.

The limitation of the technology is that it 
can only detect nutrients within the root 
zone of soil, and cannot reveal nutrient 
movement into deeper layers, or into 
aquifers in the way that lysimeters can62. 
However, this constraint may be potentially 
addressed through a combination of 
GNSS-R and hydrological modelling. 
GNSS-R can generate detailed data on 
soil moisture levels across landscapes, 
and when combined with sophisticated 
hydrological modelling, could estimate the 
movement of nutrients in the shallow layers 
of soils into groundwater and waterways69. 

Remote sensing can also be used to detect 
nitrates and phosphates in surface water 
bodies, like lakes and streams. When high 
nutrients are present in these waterbodies 
different types of algae are produced. These 
nutrients can be detected in the same way 
that nutrients are detected in soil by picking 
up the signatures of the algae which 
correspond to changes in the reflectance of 
chlorophyll in the algae28.

Availability of technology in Aotearoa 
New Zealand

Currently a range of in situ sensors are 
available. The hyperspectral imaging and 
GNSS-R technologies are available for 
remote sensing, however, AI methods 
for analysing this data have not been 
developed for A-NZ conditions but have 
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been developed abroad70 . eDNA technology 
for assessing soil microbial diversity is 
available and advanced in A-NZ.

Detecting erosion

In-situ soil monitors provide insights into 
potential soil erosion, but these are limited 
by scale and cost, however, remote sensing 
offers a valuable and effective method 
for detecting erosion and has been used 
since the 1990s. Data from plane and UAV-
based LiDAR systems and a broad range 
of satellite scanning technologies provides 
information about a set of erosion factors - 
the topography, soils, vegetation, and land 
use. Terrain characteristics are able to be 
obtained through digital elevation models 
generated by satellite image processing, 
such as Advanced Land Observing Satellite 
(ALOS), Shuttle Radar Topography Mission 
(SRTM), ASTER Global Digital Elevation 
Map (GDEM)71. Vegetation cover is also 
a critical input for soil erosion detection. 
Satellite-based spectral indices, including 
the Normalised Difference Vegetation 
Index (NDVI), Normalised Difference Soil 
Index (NDSI), Tasseled Cap Transformation 
(TCT), along with Linear Spectral Unmixing 
Analysis (LSMA) are often used to estimate 
soil erosion processes, to investigate soil 
exposure, to measure soil reflectance, to 
evaluate soil erosion status and assess soil 
properties72. Remote sensing data gathered 
via plane, UAV, and satellite is used to 
directly identify erosion areas and sediment 
accumulation sites73. Most landslides in 
A-NZ are rapid, shallow slides and flows that
occur in soil and regolith in response to
storm rainfall, these shallow landslides are
considered the dominant erosion process74.
For these types of erosion events, scans
covering time periods are considered the
best source of information for statistical
landslide susceptibility modelling with
variation of the colour or structure of soil as

a subsidiary indicator of soil degradation 
and impending erosion75. Even while rainfall 
is generally the triggering event, using 
individual storm inventories is not optimal 
because of their dependency on the pattern 
and extent of rainfall triggering events76. 
In a similar analysis, the vegetation indices 
used for soil exposure measurements can 
be used to pick up on overgrazing and 
pugging that has occurred in paddocks77. All 
of these measurements rely on frequently 
collected data of which satellites are poised 
perfectly to capture.

Availability of technology in Aotearoa New 
Zealand

These technologies and datasets are 
available in A-NZ. LiDAR scanners are 
available for both commercial and (some) 
recreational drones and several companies 
offer LiDAR scanning services across the 
country. Land Information New Zealand’s 
(LINZ) National Elevation Programme 
provides LiDAR-based elevation open data 
for much of A-NZ. Data on topography, soils, 
vegetation, and land use from the different 
satellite’s is also available for most of A-NZ, 
though often the free or cheap data is 
of low resolution while high-resolution 
data is more costly. The Ministry for the 
Environment provides satellite data with a 
resolution of between 10-15 m, licensed as 
a Creative Commons, where the required 
resolution for detecting soil erosion is in the 
~0.5 m range78.

Detecting sediments in water

In-situ sensors play an important role in 
directly detecting and measuring sediment 
levels in water, often providing real-time 
data. Turbidity metres, or turbidimeters, 
gauge the cloudiness or haziness in water 
due to suspended particles, offering insights 
into sediment concentration79. Similarly, 
suspended solids probes, which often 
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operate based on optical or laser diffraction 
principles, measure the concentration 
of these suspended sediments80. Optical 
Backscatter Sensors (OBS) determine 
sediment concentration by measuring 
the intensity of light scattered back to the 
sensor from these particles81. 

Remote sensing offers a powerful approach 
to detecting and monitoring sediments in 
waterways, which can arise from sources 
like soil erosion and urban runoff. The 
presence of sediments can alter the colour 
and turbidity of water, and optical sensors 
on satellites can detect these changes 
by measuring the light reflectance from 
the water’s surface82. The specific colour 
or appearance of the water can indicate 
the concentration and type of sediments. 
Different water particulates, such as 
sediments, phytoplankton, and dissolved 
organic matter, possess unique spectral 
signatures84,85. Analysing these signatures, 
especially in the visible spectrum from 
green to red wavelengths, allows for the 
determination of sediment concentrations86 
Turbidity, which describes the cloudiness 
of a fluid due to particles, can also be 
estimated using remote sensors, providing 
insights into sediment levels. Use of 
the empirical, generic equation allows 
for the estimation of turbidity without 
prior derivation of a reflectance and 
turbidity relationship, which requires 
in-situ, site-specific measurements87 
Use of fine resolution satellite imagery 
(e.g., PlanetScope from Planet) across 
different light spectrums can reveal water 
turbidity in narrow streams and rivers, 
with the green band producing the most 
accurate estimates86. In some instances, the 
thermal properties of water, which can be 
influenced by sediments, can be assessed 
using thermal imagery82 Additionally, radar 
systems, including SAR, can detect changes 

in water surface roughness caused by 
sediments89.

Availability of technology in Aotearoa New 
Zealand

These technologies are currently available. 
A-NZ companies provide turbidimeters 
with a number of sensors, including pH, 
temperature, and turbidity, and both 
cellular and satellite connectivity, though 
the costs of these can be prohibitive. 
Similarly, the required satellite imaging is 
also available, though for narrow waterways 
the resolution needs to be well below 5 m 
for accurate spectral analysis, requiring 
access to the latest generation satellites, 
with the recommended resolution 
being 4-5 pixels across the width of the 
waterbody90.

Detecting Carbon Emissions and 
Sequestration

Detecting carbon emissions of farming 
activity at a fine scale is difficult. This 
is because there are so many sources 
of greenhouse gas emissions to the 
atmosphere, particularly regarding 
agriculture. Ruminant livestock produce 
methane during digestion, while manure 
decomposition can emit both methane and 
nitrous oxide. Soil management practices, 
such as tilling and fertilisation, can release 
carbon dioxide and nitrous oxide. Burning 
agricultural residues post-harvest, using 
fossil fuels for machinery, and removal of 
native ecosystems, such as wetlands and 
forests, for agricultural expansion further 
add to GHG emissions91. Additionally, the 
transportation of farm products and inputs, 
energy-intensive irrigation, and the use of 
certain soil amendments and chemicals 
indirectly contribute to the farm’s carbon 
footprint. 
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Currently, determining the emissions 
from a farm requires the use of a range 
of methods, often involving expensive 
technologies that are brought on site to 
undertake measurements. Adding to the 
complexity is that emissions can change 
due to a range of biophysical factors, such 
as season, temperature, wind conditions, 
and soil type92. Gas Chromatography is a 
laboratory technique employed to measure 
specific GHG, such as methane  and 
nitrous oxide , extracted from farm soil 
or manure samples93. The Tunable Diode 
Laser Absorption Spectroscopy (TDLAS) 
uses optical methods to identify gases 
by assessing the absorption of laser light 
at distinct wavelengths, with its portable 
versions being especially useful for direct 
field measurements from sources like 
livestock or manure heaps36. Fourier 
Transform Infrared Spectroscopy (FTIR) can 
simultaneously detect multiple gases by 
analysing their unique infrared absorption 
patterns, and its portable variants facilitate 
on-site assessments94. Flux Chambers, 
containers positioned over soil or water 
surfaces, trap emissions for subsequent 
GHG content analysis23. 

In terms of carbon sequestration, a 
combination of LiDAR and spectral imaging 
can be used to make reasonably accurate 
assessments of carbon capture within 
vegetation on both farms and in forests 
using satellites95. As outlined previously 
LIDAR can detect changes in the density 
and height of vegetation over time, which 
can be used to determine how much 
carbon is being stored. The imaging 
generated by satellites and drones can be 
used for this purpose. It is, however, more 
challenging to detect levels of carbon 
sequestration within soils using remote 
sensing. Typically soil sampling and 
subsequent laboratory analysis is used to 
determine the amount of carbon stored in 

the soil, giving insights into a farm’s role as 
a carbon sink or source96. Although remote 
sensing methods using satellite data have 
been developed overseas for determining 
soil carbon sequestration, the processes 
they use are not publicly available in A-NZ. 
However, it appears that changes in soil 
carbon levels can be deduced based on 
knowledge regarding soil water holding 
capacity and according to soil type. Soils 
with more carbon can hold more water, 
consequently, changes in the water holding 
capacity of soil over time can indicate 
changes in soil carbon97.  Detailed data 
on soil moisture levels across landscapes 
and could be used for this purpose. This 
approach also applies to detecting soil 
organic matter - which is effectively a 
measure of soil carbon levels.

In terms of in-situ sensors the Eddy 
Covariance System can be used to 
detect both GHG emissions and carbon 
sequestration98. This system gauges gas 
exchanges between the land or pasture/
crops and the atmosphere using high-
frequency measurements. Two instruments 
are attached to a mast, or tower, on-farm. 
Firstly, an anemometer measures the three-
dimensional wind several times per second, 
capturing tiny vertical wind movements 
(eddies) that transport gases to and from 
the ground. Secondly, a gas analyser 
measures the concentration of the target 
greenhouse gas at equally high frequencies. 
The rapid measurements capture the 
fluctuations in gas concentration associated 
with each eddy. Advanced software tools are 
used to clean, process, and analyse the data 
to arrive at GHG flux estimates between the 
land and atmosphere.

Apart from the Eddy Covariance System 
there are software tools and models that 
predict GHG emissions based on diverse 
farm parameters, drawing from empirical 
data and extensive research using the 
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techniques outlined above. However, the 
disadvantage with modelling is relation to 
the GHG balance on farms in particular is 
that there is significant variance in the way 
individual farmers farm, leading to large 
variations that may not be captured in 
deterministic models. 

Availability of technology in Aotearoa  
New Zealand

While in-situ sensors for measuring 
GHG are available, the ability to do these 
measurements remotely is currently being 
developed. The MethaneSAT project99 (a 
satellite aimed specifically at measuring 
GHG) is a partnership between the New 
Zealand government and NASA and is 
aimed to launch at the start of 2024. The 
data from this satellite will greatly expand 
the ability to measure GHG without in-situ 
sensors. 

The ability to measure sequestered carbon 
using remote sensing has not been made 
publicly available in New Zealand as 
mentioned above. Local Crown Research 
Institute, Scion, has done research in this 
area with plantation forests100, however, 
the ability to measure beyond the tree 
canopy has not been available. Having the 
Rongowai programme’s soil moisture data 
available will provide critical information 
that current models are missing for 
predicting soil carbon. Moving the 
modelling done overseas into an A-NZ 
context will then be a much more trivial 
task.

Detecting Water Availability and 
Excessive Extraction

The primary source for water as well as 
measuring excessive extraction lies within 
the knowledge of the amount of water in 
the underground aquifers. The traditional 
way to measure aquifer volume is with 
geographical knowledge of an area. 

Water can lie in predictable areas (such 
as between rock layers) and knowing the 
geography of a specific area can increase 
the likelihood of finding water. Newer 
methods of detection involve using a 
seismic mapping technique. The measuring 
process sends a percussion sound wave 
into the ground and analyses the returning 
sound wave101. The changes in density of the 
contents (soil, rock, water, hollow area) show 
up as different sound wave frequencies on 
their return. While this method allows for 
depths of up to 100m into the ground, this 
method requires multiple measurements 
per farm to obtain a map of potential water. 

When we look at remote sensing 
methods, we are generally limited to 
surface water measurements. GNSS-R 
and SAR technologies have the ability 
to penetrate into the soil and with the 
Rongowai programme26 mounting the 
sensor to an aircraft and bringing the 
measurements closer to the earth surface 
they have the possibility to measure up to 
100 mm depth. SAR measurements vary 
depending on the specific band they are 
using but with L-band there is a potential 
penetration depth of 100 to 250 mm 
depending on the ground conditions102. 
While these measurements will not reach 
any underground water sources, we are 
able to get an insight into the surface water 
flow of an area. When these measurements 
are combined with traditional modelling 
techniques for water flow using AI, we 
have the ability to estimate the status of 
ground water in an area103. Furthermore, 
with the access to frequent high resolution 
satellite imagery, we can measure various 
vegetation indices to determine areas of 
wetter conditions. 

Availability in of technology in Aotearoa 
New Zealand

Water drilling experts and engineers will 
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have local knowledge of an area and be 
a good first indication of water sources 
within an area. There are many experts 
across A-NZ in all regions. Seismic water 
measurements are also available in parts 
of the north island from a small company 
in Gisborne. The remote sensing modelling 
has been done overseas but not in an A-NZ 
context. 

Detecting Heavy Metals in Soil

Technology for detecting heavy metals 
(As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb 
and Zn) comes primarily from the mining 
industry. Being able to pick up on 
contamination beyond a mining site is 
critical. Techniques have been developed to 
pick up on a variety of heavy metals by 
using indices developed for their detection. 
These indices rely on the use of Visible and 
Near-Infrared and Short Wave Infrared to 
pick up the metal traces104. The current 
research has focused on mining activities as 
this is a high likelihood of future issues, but 
the research has not made its way into a 
farming practice, or broader environmental 
monitoring yet. 

Availability in of technology in Aotearoa 
New Zealand

While these techniques are developed 
for mining activities overseas, they have 
not been developed in an A-NZ land 
management context. Instead, standard soil 
sampling techniques are used.

Detecting species biodiversity in 
surface water

Conventional methods such as water 
sampling are primarily used, however 
eDNA, and associated databases, are 
providing an excellent source of in-situ data 
for taonga species and species diversity105. 
It is not currently possible to detect these 
species using remote sensing, however; 
species diversity can be correlated to other 
measures of water quality such as low 
nutrient concentrations, low turbidity, high 
oxygen levels, and appropriate pH106.

Availability in Aotearoa New Zealand

eDNA sources are increasingly popular 
within A-NZ and even have open data 
for the public to view and use. Sensors 
are currently cost prohibitive for smaller 
operations, but as the technology becomes 
easier to manufacture more data will be 
available for use.
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Combining technologies 
to generate a Kaitiaki 
Intelligence Platform

The Kaitiaki Intelligence Platform46

Technologies capable of high-
resolution environmental sensing offer 
a comprehensive means to detect shifts 
in biodiversity, native land cover, soil 
nitrates, and phosphates, their migration 
into water, erosion patterns, waterborne 
sediments, and the dynamics of GHG 
emissions and sequestration. These tools 
could equip MACs with in-depth insights 
into the environmental repercussions of 
their agricultural and forestry operations 
and guide continual improvement. 
Addressing iwi environmental concerns, 
these technologies can pinpoint areas 
within a rohe or tribal territory where 
freshwater sources are compromised due 
to agricultural and forestry runoff. They also 
highlight regions susceptible to drought or 
excessive water extraction. The technologies 
can identify zones experiencing land 
degradation, whether from soil quality 
deterioration, erosion, or suboptimal 
agricultural and forestry practices. 
Furthermore, they can detect the decline 
of taonga species resulting from habitat 
loss, invasive threats, and alterations in the 
health and extent of native ecosystems. This 
intricate terrestrial monitoring also sheds 
light on pollutants, such as sediments, 
entering coastal marine zones. Having 
access to such comprehensive data would 
bolster the ability of iwi to participate 
actively in resource management 
discussions, ensuring their rights and 
interests receive due recognition and 
respect.

Utilising live in-situ sensors, along with 
traditional sampling and lab analysis 

techniques, can be costly and challenging 
to implement on a large scale. In contrast, 
emerging remote sensing technologies, 
powered by AI, present a cost-effective 
solution for extensive monitoring to 
the benefit of MACs and iwi. However, 
as previously mentioned, in-situ and 
remote sensing methods are not mutually 
exclusive; they can complement each 
other. Specifically, areas with detailed 
in-situ monitoring can serve to calibrate 
remote sensors. This, in turn, can inform 
AI development, refining and enhancing 
remote sensing techniques over time. 

Furthermore, there is a relatively high 
degree of crossover in terms of remote 
sensing technologies and different metrics 
needing monitoring. For example, LiDAR 
and spectral imaging can provide data on 
both erosion and carbon sequestration, 
while the same in-situ metres are often 
modular and can provide data on a range of 
different factors. For instance, water metres 
can measure turbidity, temperature, pH, 
dissolved oxygen, conductivity, trace metals, 
chlorophyll-a, oxidation reduction potential, 
biochemical oxygen demand, flow rates, 
nitrates, and coliforms. Given the significant 
potential and advantage of remote sensing 
to provide detailed and comprehensive low-
cost environmental data at both farm and 
rohe scales, an emphasis has been placed 
on these technologies in the design of a 
KIP. However, where such technologies are 
not available or someway away from being 
developed in-situ monitoring or modelling 
approaches have been drawn upon. 
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Table 3:  Kaitiaki Intelligence Platforms technology input

Metric Detection 
Categories P

os
si

b
le

 
u
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n
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e 
se

n
si

n
g

?

What detector types? How? R
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rc

h
 &

 
D

ev
el

op
m

en
t 

n
ee

d
ed

?

BIODIVERSITY INDICATORS

Native Habitat

Riparian planting

Species diversity

Presence/absence of  
pest and weed species

Optical, multispectral, and 
hyperspectral cameras AI generated biodiversity signatures from vegetation 

reflectance and structure, and soil moisture for 
wetland identification.

Calibrated with in-situ sensors and biodiversity 
databases that store data

LiDAR

GNSS Reflectometry

Taonga Species

AI generated biodiversity signatures can detect some individual taonga plant species. 
The presence of other species may possibly be inferred from the presence, extent, and 
health of ecosystems revealed by AI generated signatures. ≠≠≠Calibration with in-situ 
sensors and biodiversity databases would be necessary (e.g., eDNA databases)

Detection of native  
and pest fauna

Optical, multispectral, and 
hyperspectral cameras

AI generated biodiversity signatures from vegetation 
reflectance and structure can detect levels of 
browsing pest fauna indicating presence and 
abundanceLiDAR

There are no remote sensing 
options for detecting many 
species of fauna

In-situ sensors and sampling methods are required 
such as camera traps, acoustic sensors, and eDNA

SOIL QUALITY INDICATORS

Erosion Optical, multispectral, and 
hyperspectral cameras

AI generated erosion signatures (i.e., landslips) from 
ground reflectance

Compaction Optical, multispectral, and 
hyperspectral cameras

AI generate signatures from vegetation and soil 
ground reflectance

In Table 3, the various indicator and metric 
detection categories are outlined and based 
on the analysis and discussion throughout 
this report, it is indicated whether remote 
sensing is possible for the detection 

categories, what types of detection 
technologies is needed, how it would occur, 
and whether research and development is 
required to implement.

Ye
s

M
ay

b
e

N
o
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Metric Detection 
Categories P

os
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b
le
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What detector types? How? R
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h
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D
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m
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t 

n
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d
ed
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WATER QUALITY AND QUANTITY

Excess Nitrates and
Phosphates

in soil
Multispectral, and hyperspectral 
cameras

AI generated soil nutrient signatures from 
pasture and crop vegetation reflectance to 
reveal nutrients within rootzone.

Calibrated with in-situ nitrate and phosphate 
sensors

Ground water quantity
Surface water flows  

Remote GNSS Reflectometry in 
combination with sophisticated 
water modelling

GNSS reflectometry reveals surface and soil 
moisture levels and sophisticated water 
modelling predicts migration to below ground 

Nitrate and Phosphate 
migration to ground and 

surface water
 

Remote GNSS Reflectometry in 
combination with sophisticated 
water modelling

GNSS reflectometry reveals soil moisture levels 
and sophisticated water modelling predicts 
nutrient migration from plant rootzone to 
ground and surface water. 

Calibrated with in-situ lysimeters and in-situ 
stream sensors

Nitrate and phosphate 
surface water 
concentration

Multispectral, and hyperspectral 
cameras

AI generated nutrient signatures using algal 
chlorophyll reflectance 

Calibrated with in-situ nitrate and phosphate 
sensors

Species diversity Conventional sampling 
methods and eDNA Using mobile or in-situ eDNA sampling  

GHG INDICATORS

Emissions 

There are no remote sensors 
that can do this at a local scale. 
The in-situ Eddy Covariance 
System can be employed at 
farm scale, but expensive. 
Modelling required.

There are various forms of software based 
on input-output models that can be used to 
estimate the likely GNG footprint of farms 
and regions. They are however static and 
deterministic models and may not capture 
local nuance

Carbon sequestration in 
soil / Soil Organic Matter Remote GNSS Reflectometry AI generated signatures that detect changes in 

soil carbon via soil moisture holding capacity

Sequestration in 
vegetation LiDAR Detecting changes in vegetation structure 

indicating above ground carbon storage

STOCK MANAGEMENT

Paddock lines

Stock numbers
Optical, multispectral, and 
hyperspectral cameras

AI generated stock and fence line signatures 
from ground reflectance
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The Kaitiaki Intelligence Platform 
– a modular design

Building a platform that is capable of 
monitoring and reporting across each of 
the indicator–metric detection categories 
outlined above would be a significant 
undertaking. Two approaches could be 
taken to build this, a staged approach, or 
a complete build approach. Each of the 
indicator–metric detection categories 
may be considered a module, making 
17 modules (illustrated in Table 4), each 
of which could be built separately in a 
sequential way, or all built simultaneously 
together. The strength of the staged 
approach is that it would permit modules 
to be built based on the level urgency 
and ease of development. This allows 
for the gradual construction of the KIPs 
over time, depending on the availability 
of resources and investments from MACs 
and iwi, and other stakeholders. However, 
many of these modules rely on the same 
data source, typically remote sensing 
data, often obtained from satellites. For 
example, both native habitat biodiversity 
and soil stability detection depend on 
multispectral imagery. In such cases, the 
purchase of imagery can be a one-time 
investment that covers the development 
of multiple modules. Consequently, there 
can be efficiency gains from pursuing a 
complete build approach where modules 
are developed simultaneously, considering 
their data interdependencies. Nevertheless, 
a combination of these two approaches is 
likely to be the most effective. In this hybrid 
approach, the entire system or complete 
build is kept in mind while designing and 
building individual modules. This allows for 
capturing efficiencies wherever possible 
while permitting modules to be developed 
as resources become available.  

The module building process

Many of the modules mentioned have 
been successfully developed and tested in 
other regions, but they have not yet been 
tailored to the specific conditions of A-NZ, 
including its unique ecology, geology, soils, 
crops, pastures, and land management 
practices. Adapting these modules to the 
local context requires two essential sets of 
data. Firstly, it necessitates high-quality, 
locally ground-truthed environmental data 
specific to a particular area (which may 
include mātauranga-derived data), along 
with relevant remote sensing data (such 
as optical, multispectral, or radar satellite 
imagery) covering the same region. This 
ground-truth data serves a dual purpose: 
it is initially used as training data for the 
models, allowing them to adapt to the new 
landscapes and signatures observed in the 
satellite data; additionally, it is employed 
to validate the model’s outputs and assess 
its accuracy. The process of constructing 
these models is iterative. Initially, a selected 
model is run using the training data, and 
the results are compared against the 
ground-truthed data. This process may be 
repeated multiple times until a satisfactory 
result is achieved – a process through which 
mātauranga can be built into models. 
Furthermore, additional input data may 
be introduced into the model to better 
distinguish specific signatures from their 
surroundings.

As these modules are developed, there is 
an opportunity for interoperability between 
them, which can enhance their predictive 
accuracy. For instance, if a biodiversity 
module is in development, it may benefit 
from integrating information from modules 
related to soil erosion and heavy metals 
detection. These modules can provide 
complementary data that, when combined  
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using a neural network approach, enhances 
the predictive capabilities of the 
biodiversity module. A full outline of the 
modules underpinning the KIP are outlined 
in Table 4 (p52) and includes the 
underpinning category the module is 
gathering data and reporting against, the 
data needed to develop the module, and a 
description of the process for module build.

The overall development sequence of the 
modules would be influenced by three 
factors: 

1. Demand: The priority is given to areas
with the highest interest from MACS
and iwi. A strong interest in a specific
area strengthens the case for developing
those modules first.

2. Existing Developments: Efforts and time
can be significantly reduced by adapting
existing research or products that are
close to deployment. This approach
avoids the need to start research from
scratch.

3. Data Sharing: If there are modules that
can use the same input data, such as
satellite imagery, this can lower both
the initial costs of data research and
the effort required to integrate the data
into the KIPs framework. If a module
already developed uses the same data
a new module needs, it streamlines the
process.

Warehousing data

The development of modules will require 
the retrieval, analysis, management and 
storage of significant quantities of data. 
With the costs associated in acquiring data 
(primarily satellite) being relatively high, the 
data becomes an asset which needs proper 
storage. Depending on the type of data and 
its area coverage, this can be a very large 
amount of data to store as well (hundreds 
of terabytes). Both points lend the project 
to rely on a data streaming structure. 
This structure means that the data is not 
stored permanently on servers owned by 
the platform but instead is downloaded 
from the data host (i.e., Planet Labs) when 
needed for analysis. Most data providers will 
account for the purchasing of data within 
their system so to redownload does not 
pose extra costs. This allows for an initial 
download of the data, then the data can be 
stored locally while the model is being built. 
Once the models have been built and ready 
for further analysis the data used to build 
those models can be discarded. If there is a 
need to get the data back, then it can 
be re-downloaded from the supplier. This 
significantly reduces the cost of storage 
and archiving of data. At the time that a 
user is wanting a new output from the 
already built models, the latest imagery will 
be pulled down for analysis, run through 
the models and the model outputs will 
be passed to the user. The imagery will 
once again be discarded after it has been 
run through the model as it is no longer 
needed. This user interaction is described 
as a data streaming structure where only 
the outputs are held onto by the end user.
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A user interface
While most of the discussed platform 
features up to this point lie within 
the backend of the platform, the user 
interaction is of great importance as well. 
There are three ways in which we intend 
to have user interaction: 

1. Summarised data document,

2. GIS maps,

3. Virtual user experience.

The summarised data will be for a user who 
is needing the information provided by the 
platform to pass onto further analysis or to 
be integrated into a larger report. This 
output will involve taking the model output 
data (e.g., total area of native habitat)  

and summarising it for the user (e.g., total 
area across regions). The GIS output will 
allow further integration and visualisation 
by a user who is familiar with working inGIS 
maps. This output could allow further 
analysis of the model outputs such as 
changes over time or simply to visualise the 
outputs overlaid on a map such as Google 
Earth. The virtual user experience is 
intended to provide a subversive 
experience for the end user. Amongst 
many potential users, an end user might be 
a trustee or shareholder of a MAC or an iwi 
decision maker forming an environment 
plan. The user would be able to see an 
animation of the output (e.g., prediction of 
soil erosion areas and the predicted land 
change). 

Adapting these modules to the local context requires two 
essential sets of data. Firstly, it necessitates high-quality, 
locally ground-truthed environmental data specific to a 
particular area (which may include mātauranga-derived 
data), along with relevant remote sensing data (such as 
optical, multispectral, or radar satellite imagery) covering 
the same region. This ground-truth data serves a dual 
purpose: it is initially used as training data for the models, 
allowing them to adapt to the new landscapes and 
signatures observed in the satellite data; additionally, it 
is employed to validate the model’s outputs and assess 
its accuracy. The process of constructing these models is 
iterative.
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Table 4: Kaitiaki Intelligence Platform modules

Module
Detector 
Category Module Data Source Build Description

1

Terrestrial
Biodiversity

Ecosystem type 
by area: Native 
vegetative 
biodiversity 

RGB, Multispectral, 
SAR, GNSS-R, LiDAR, 
Hyperspectral

AI-generated biodiversity signatures from vegetation 
reflectance structure and soil moisture for wetland 
identification.

Calibrated with in-situ sensors and existing biodiversity 
databases.

2 Taonga Species
RGB, Multispectral, 
SAR, GNSS-R, LiDAR, 
Hyperspectral, eDNA

AI-generated biodiversity signatures can detect some 
individual taonga plant species. Other species’ presence 
may be inferred from the presence, extent, and health of 
ecosystems revealed by AI-generated signatures. Calibration 
with in-situ sensors and biodiversity databases would be 
necessary.

3 Native and pest 
fauna

Optical, multispectral, and 
hyperspectral cameras, 
eDNA, LiDAR

AI-generated biodiversity signatures from vegetation 
reflectance and structure can detect levels of browsing pest 
fauna, indicating presence and abundance.

In-situ sensors and sampling methods, such as camera traps, 
acoustic sensors, and eDNA.

4

Soil Stability 
and Quality

Erosion Optical, multispectral, and 
hyperspectral cameras

AI-generated erosion signatures (i.e., landslips) from ground 
reflectance.

5 Pugging and 
Compaction

Optical, multispectral, and 
hyperspectral cameras AI-generated ground disturbance signatures.

6 pH Multispectral and 
hyperspectral cameras

AI-generated biodiversity signatures from vegetation 
reflectance and species presence, case study ground-truthing.

7 Microbial Diversity 
and Quantity eDNA Using mobile or in-situ eDNA sampling, and existing eDNA 

databases. 

8

Water 
Quality and 

Quantity

Excess Nitrates and 
phosphates in soil

RGB, Multispectral, 
Hyperspectral

AI-generated soil nutrient signatures from pasture and crop 
vegetation reflectance to reveal nutrients within rootzone 
calibrated with in-situ nitrate and phosphate sensors.

9
Surface and ground 
water flows & 
associated nitrate 
and phosphate 
migration 

Remote GNSS 
Reflectometry, RGB, 
in combination with 
hydrological modelling

GNSS reflectometry reveals soil moisture levels and surface 
water, modelling predicts migration to groundwater. Modelling 
also predicts nutrient migration from plant rootzone to ground 
and surface water. 

Calibrated with in-situ lysimeters and in-situ stream sensors.

10
Nitrate and 
Phosphate surface 
water concentration

Multispectral and 
hyperspectral cameras

AI-generated nutrient signatures using algal chlorophyll 
reflectance
Calibrated with in-situ nitrate and phosphate sensors.

11 Species diversity Conventional sampling 
methods and eDNA

Using mobile or in-situ eDNA sampling, or existing eDNA 
databases where available. 

12

GHG

GHG emissions to 
air

There are no remote 
sensors that can do this 
at a local scale. The in-situ 
Eddy Covariance System 
can be employed at farm 
scale but is expensive. 
Modelling required.

Using mobile or in-situ eDNA sampling, or existing eDNA 
databases where available. 

13 Methane Emissions Satellite - MethaneSAT

Various forms of software based on input-output models can 
be used to estimate the likely GNG footprint of farms, rohe, and 
regions. They are, however, static, and deterministic models 
and may not capture local nuance.

14
Carbon 
Sequestration in 
soil/ soil organic 
matter

Remote GNSS 
Reflectometry

AI-generated signatures that detect changes in soil carbon 
via soil moisture holding capacity. Existing data on soil type is 
required.

15 Sequestration in 
vegetation LiDAR Detecting changes in vegetation structure indicating above-

ground carbon storage.

16 Stock 
Management

Paddock lines Optical, multispectral, and 
hyperspectral cameras AI-generated fence line signatures from ground reflectance.

17 Stock numbers Optical, multispectral, and 
hyperspectral cameras AI-generated stock signatures from ground reflectance.
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The Kaitiaki Intelligence 
Platform Design 
The modules outlined above are designed 
to generate the biophysical environmental 
data sought by MACs and iwi. However, 
it is important to orientate and place this 
technology within a Māori value system 
and mātauranga frame. Drawing on the 
discussion in earlier sections of this report, 
it was outlined how the environment, from 
a mātauranga perspective, is divided into 
different atua domains. Although there 
are many atua, which vary between hapū 
and iwi across A-NZ, there are a group of 
atua that are commonly referenced within 
a range of Māori environmental reporting 
frameworks that represent - in Western 
terms - the natural world. However, from a 
Māori worldview, humans are not separate 
from nature, and as such have their own 
atua domain, Tūmatauenga. These atua 
are descendants of two primordial parents, 
Papatūānuku and Ranginui. The schematic 
in Figure 1 (p55) illustrates how this 
whakapapa structure underpins the KIP 
design, with Ranginui and Papatūānuku 
represented two poles of the design - 
containing all domains. Each KIP module is 

placed within, or across, the atua domain/s 
associated most strongly associated with 
it. For example, modules designed to 
generate data concerning the health of 
terrestrial biodiversity are situated within 
Tāne’s domain – the atua of forests, forest 
creatures, and many plants. Table 5 below 
outlines the different atua domains and the 
modules associated with them - noting that 
more than one atua is mentioned for the 
same atua domain to illustrate how hapū 
and iwi have either different names for the 
same atua, or a different atua for a specific 
domain.

The data that remote sensing technology 
gathers, is represented by atua Hinekōrako 
(lunar rainbow). This atua represents the 
optical phenomenon of a rainbow when 
light from the moon refracted through tiny 
droplets of water. Very rare, Hinekōrako  
represents the accumulation of trillions 
of droplets that usually cannot be seen 
by the human eye, and therefore if seen, 
appears white. However Hinekōrako can be 
captured by a long exposure camera.
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Table 5: Atua domains linked with the Kaitiaki Intelligence 
Platform modules.

Atua Domain Modules

Tāne-mahuta Forests, forest creatures,  
many plants

Native habitat, Species presence or absence, 
Taonga species

Tangaroa or Hinemoana Water bodies and creatures N & P Migration to groundwater, Aquatic species 
presence or absence, N & P surface water

Rongomaraeroa or Rongomātāne Cultivated lands Paddock lines, Stock numbers 

Hine-ahu-one Soils and earth N & P Concentrations, pH, Pugging & Compaction, 
Erosion, Microbial diversity

Parawhenuamea Wetlands Species presence or absence, N & P concentrations

Tāwhirimātea Wind and air GHG emissions, GHG sequestration

Tūmatauenga & Hine-tītama Humans - Te Ao Turoa - the natural world Taututuutu reporting:  Mauri-ora or Mauri Mate
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Remote sensing detectors, are represented 
in as residing in the domain of Ranginui, 
given their association with the sky and 
space. Data flows from the sensors and are 
combined, where required, with data from 
in-situ sources (i.e., conventional sampling, 
or eDNA) and earth system models. AI is 
then used to identify taputapu in the data, 
that can reveal the health and wellbeing of 
the various environmental atua domains. It 
is then illustrated how this intelligence may 
be used to support MACs and iwi to gauge 
whether relationship balance (utu) between 
Tūmatauenga and the other atua domains 
is mauri and mana enhancing (ora) or 
diminishing (mate). 

In Figure 1 it is also illustrated how MACs 
and Iwi (the users) may build local 
mātauranga into modelling processes 
through ground-truthing. As outlined 
previously, there are limitations with relying 
solely on biophysical data generated by 
environmental sensors to understand 
environmental changes – particularly when 
attempting to gauge changes in mauri 
and mana - which cannot be fully captured 
quantitatively. This is communicated in 
more detail within Figure 2, where it is 
shown how local mātauranga can guide 
and prompt the AI to create libraries of 
environmental signatures/ algorithms. For 
instance, AI trained to identify changes 
in the abundance of a particular tree 
species from satellite imagery may be 
correlated with local knowledge of the 
decline in abundance of that species, 
or other associated ecological changes. 
Many algorithms can be built for different 
environmental features, generating 
libraries of environmental signatures. 
Once built, these libraries can be used 
to scrape large quantities sensing data 
to detect broad environmental changes 

and examine correlations between 
different environmental indicators. 
For instance, relationships between 
indigenous ecosystem land cover and water 
quality. Through this approach detailed 
environmental reports can be generated 
concerning the mana and mauri of different 
atua domains. Moreover, Figure 2 also 
illustrates how local mātauranga Māori may 
be used to guide where remote sensors are 
directed, or in-situ sensors are placed, to 
gather data considered most relevant by 
MACs and iwi. How this mātauranga is built 
into KIP would need to be done carefully 
and with consideration to data sovereignty. 

In addition, Figure 2 also refers to the 
user interface. As outline previously, the 
user interface would allow MACs and iwi 
to access relevant data in useful formats. 
Clearly, a primary role of the user interface 
would be to communicate the status of 
atua, and particularly the state of balance, 
or imbalance, between humans and the 
environment in an iwi territory, or on the 
whenua managed by MACs. The types of 
formats, as mentioned might include data 
documents, dashboards, GIS maps, and a 
virtual user experience. The design of the 
user interface provides an opportunity to 
include qualitative and intuitive expressions 
concerning the state of the environment 
and human relations with it. Multiple 
mediums include mātauranga inspired art, 
design, waiata, and karakia, which could be 
interwoven throughout the user experience. 
Such expressions, deeply rooted in local 
knowledge and the sense of place, help 
convey the personal experiences mauri 
and mana degeneration or regeneration. 
Any design, however, would need to 
be developed with mana whenua to 
ensure that cultural sensitivities and data 
sovereignty rights are respected.
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Figure 2: Process for using mātauranga Māori to guide AI..
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The costs of building the 
Kaitiaki Intelligence Platform
Below an estimate is provided of the 
costs associated with developing the 17 
KIP modules (see feeder report here). 
Estimating costs is quite challenging given 
that many the technologies and methods 
have not been applied in A-NZ, and 
furthermore research and development 
that entails risk and uncertainty. For 
instance, while data from hyperspectral 
imaging and GNSS-R technologies are 
accessible, AI techniques for analysing this 
data to assess environmental health are 
still in early development stages in A-NZ 
- despite being more advanced overseas. 
Cost estimates for each module cover 
labour, software, hardware, data, overheads, 
scalability, external consultation, and 
research and development. The estimate 
also considers potential cost savings from 
‘experience curve’ efficiencies gained 
through development experience.

As outlined above the development of the 
KIP can proceed via a staged or a complete 
build approach. The staged approach 
involves developing modules sequentially, 
such as a water quality module, based 
on their urgency and development 
ease, allowing for phased construction 
aligned with available resources and 
investment. However, as many modules 
share common data sources, like 
remote sensing data, a complete build 
approach—developing multiple modules 
simultaneously with consideration for 
their data interdependencies—could 
be more efficient. A hybrid approach, 
which considers the entire system 
while developing individual modules, 
may offer the best of both worlds, 
combining efficiency with resource-driven 
development and tailoring each module 
to local conditions for improved predictive 
accuracy.

The cost estimates in this report lay the 
groundwork for future financial planning, 
depending on the chosen development 
approach. Costs can be adjusted based 
on shared data sources or technologies 
across modules, and efficiencies from 
similar development approaches can 
further reduce costs. Thus, this report 
establishes a baseline for the development 
of independent modules, which can be 
refined with additional future information.

The cost estimates encompass 17 modules, 
categorised into five groups. In addition 
to these, Modules 1 (Native Vegetative 
Biodiversity Detection) and 2 (Taonga 
Species) include additional sub-modules. 
In total, 39 distinct but interconnected 
developments are considered in this 
analysis.

The methodology for cost estimation 
follows a five-stage process, including 
identifying key roles and resources, 
assessing difficulty levels, estimating 
time, calculating proportional allocations, 
and summarising total costs. Technical 
experts provided primary information on 
development needs, estimating the time 
required by data scientists, and the relative 
difficulty of developing each module. 
The report delineates other costs such 
as software, hardware, data, overheads, 
scalability, external consultation, research 
and development, and marketing and 
outreach.

The total development cost for all modules 
amounts to approximately $50 million 
(Table 6). 

This figure of $50m is considered a high-
end estimate and is intended to establish 
a baseline for developing independent 
modules. The report also highlights 
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Table 6: Cost estimates for each module to be developed for 
the Kaitiaki Intelligence Platform.

MODULE COSTS NOTE

1 Ecosystem type by area: Native vegetative biodiversity detection $6,888,243 14 Signatures 

2 Taonga Species $4,525,347 7 Signatures 

3 Detection of native and pest fauna (Indicator species) $7,601,752

4 Erosion $867,418

5 Pugging and Compaction $867,418

6 pH $7,601,752

7 Microbial Diversity and Quantity $7,601,752

8 Excess Nitrates and phosphates in soil $867,418

9 Nitrate and Phosphate migration to ground and surface water $867,418

10 Nitrate and Phosphate surface water concentration $867,418

11 Species Diversity $7,601,752

12 Emissions to air $182,752

13 Methane Emissions $182,752

14 Carbon Sequestration in soil/ soil organic matter $867,418

15 Sequestration in vegetation $867,418

16 Paddock lines $867,418

17 Stock numbers $867,418

TOTAL COST $49,992,865

the possibility of deriving more precise 
estimates for any combination of multiple 
modules through an iterative approach as 
more information becomes available.

In providing the cost for developing KIP 
modules, we have considered only each 
module’s development and maintenance 
costs. The use of eDNA, however, requires 
field sampling that may add additional 
costs to a module, particularly if a 
widespread annual sampling regime were 
implemented. We estimate a national 
eDNA sampling method might involve 
taking 4,455 samples per annum across 94 
habitats for a cost $1,291,950 per annum. 

The report also considered maintenance 
costs of $30,765 p.a. for each module 
or $523,011 p.a for all 17 modules. As in 
the development costs, each module is 
treated independently, and no synergies or 
efficiency gains from crossovers have been 
considered. If an annual eDNA sampling 

regime is included, it is estimated to cost 
$1,814,961 p.a. to operate the KIP system.  
Moreover, cost for purchasing satellite 
imagery is estimated at $10M p.a.  It is 
consequently estimated that the annual 
maintenance cost would be approximately 
$12M.

The cost estimates provided in this report 
can form the basis of future financial 
analysis depending on the development 
approach. Where data sources or 
technologies complement multiple 
modules, these costs can be removed from 
the estimates. Additionally, where modules 
take a similar development approach, 
efficiencies generated through experience 
will likely reduce the cost of each next 
module. Therefore, this report should 
be understood as having established a 
baseline for developing independent 
modules that can be refined based on 
future additional information.
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Conclusions and 
recommendations

This report outlines a process by which MACs and iwi may become pioneers in 
environmental intelligence by leveraging advanced modular sensing technology, guided 
by deep environmental knowledge. The report outlines the necessity for enhanced 
environmental data collection, and how this data can support not only informed 
decision-making but also meets reporting requirements, enables sustainable financing, 
and improves market positioning. It describes the required metrics for different 
stakeholders, details the sensor technologies for these metrics, explains the modular 
system for data integration, storage, and visualisation, and offers a financial overview for 
setup and operational costs.

This project serves as a foundational step for developing a Kaitaiki Intelligence Platform 
(KIP), focusing on environmental ethics, stakeholder data needs, and the necessary 
technology and infrastructure. The research presents several recommendations for the 
platform’s conceptual and practical development.

Modules: It is recommended that a modular approach be taken to the development 
of a KIP. This allows for the options of both a staged build, based on priorities, level of 
technical difficulty, and resources, or a complete build. However, as many modules 
share common data sources, like remote sensing data, a complete build approach—
developing multiple modules simultaneously with consideration for their data 
interdependencies— would be the most efficient. A hybrid approach, which considers 
the entire system while developing individual modules, may offer the best of both 
worlds, combining efficiency with resource-driven development and tailoring each 
module to local conditions for improved predictive accuracy.

Mātauranga Māori: It is recommended that mātauranga Māori be put at the forefront 
in any build. This includes:

• Guiding what biophysical data is gathered by remote and in-situ sensors.

• Ground-truthing AI generated environmental signatures and models through the 
local knowledge of mana whenua.

• Using indigenous sovereignty principles in the warehousing and management of 
data.

• Using whakapapa, to underpin the generation and framing of information created 
by the platform. This would involve gauging the relationships between humans and 
the environment in terms of utu, and more particularly whether humans are acting 
in ways that enhance or diminish the mauri or mana of environmental atua. 
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Product accreditation: It is concluded that there is an opportunity for a KIP to offer 
indigenous product accreditation, providing verification for consumers interested in 
purchasing genuine environmentally sustainable indigenous products.  

Biophysical Data: It is also recommended that the KIP generate data in biophysical 
formats to assist Māori Agribusiness Collectives (MACs) and iwi in their engagement 
with government, to support environmental reporting according to regulatory 
requirements, and generate data for the sustainable finance and market assurance 
sectors. Income from data sales could support ongoing KIP development; however, the 
capacity of these sectors to integrate high-quality data into their systems is currently 
limited due to issues with their data infrastructure and the challenges they face in 
standardising data. 

Partnerships: It is concluded that the development of the platform would require 
partnerships with data, technology, and research providers (i.e., satellite companies, 
data analytics platform providers, and science institutions). Data would need to be 
brought together, warehoused, analysed, and processed, and communicated through 
multiple mediums. It should be noted that the technology in this area is rapidly 
advancing and that the market, or ecosystem, of technology providers is fluid and 
changing. Consequently, partnerships with technology companies most likely to survive 
in this dynamic environment should be carefully selected and prioritised.

Consortium: It is recommended, that for a KIP build to be successful, leadership of an 
iwi or MAC, or a consortium of these entities under a common governance structure, 
would be required. Such a structure would be needed to attract the necessary 
resources and investment and partnerships with the public and private sectors. 

Investment, ownership and management: It is concluded that the build of the KIP is 
technically feasible and not overly complex, with the modules outlined having been 
successfully developed in other contexts outside of A-NZ.  However, the complexity 
in the build lies in the development of structures for investment, ownership, and 
management of data. 
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Glossary  

Atua: Deities / Sentient eco-systems

Hapū: Subtribe

Hine-ahu-one: First woman created from 
soil by Tāne / Sentient eco-system

Hinekōrako: The lunar rainbow

Hinemoana: Female deity of the sea

Hine-tītama: Daughter of Hine-ahu-one, 
who was formed from the earth

Iwi: Tribe

Kaitiaki: Guardian, keeper, preserver, 
conservator, foster-parent, protector 

Kaitiakitanga: Guardianship, obligation, 
arising from kin relationship, to nurture or 
care for a person or thing. It has a spiritual 
aspect, to nurture well-being and mauri

Karakia: Chants, prayers, oral artform

Kaupapa: Topic, matter for discussion

Mahinga kai: Food-gathering place

Mana: Authority, prestige

Mana whenua: Māori people with 
authority for the land

Maramataka: Māori lunar calendar

Mātauranga: Māori knowledge system

Mate: Mana diminishing, unwell

Mauri: Life essence

Ora: Mana enhancing, wellbeing

Papatūānuku: Mother earth / Sentient  
eco-system 

Parawhenuamea: Wetlands, rivers, 
streams and flood waters deity

Patupaiarehe: Fairy folk, forest or 
mountain dwellers

Rangatiratanga: Showing leadership and 
self-determination

Ranginui: Sky Father / Sentient eco-system

Rongomaraeroa: Deity of cultivated food

Rongomātāne: Deity of cultivated areas

Takiwā: District, area, region

Tāne-mahuta: Deity of the forests 

Taniwha: Water spirit, guardian, can 
indicate area with a natural hazard

Tangaroa: Water and water creatures deity

Tapu: Sacred

Taputapu: Patterns

Tāwhirimātea: Wind and air deity

Tauutuutu: Reciprocity

Te Ao Māori: Māori worldview

Te Ao Tūroa: The natural world, light of day

Tikanga: Correct procedure, custom

Tūmatauenga: War and humans deity / 
Sentient eco-system

Utu: Repaying to restore balance

Wāhi tapu: Sacred place

Wāhi taonga: Sacred possesions

Waiata: Songs, singing

Wairua: Spirit, soul - spirit of a person 
which exists beyond death

Whakapapa: Genealogy, knowledge 
organising principle

Whakaaro: Thought, opinion, plan, 
understanding, idea, intention, gift, 
conscience

Whanaungatanga: Nurturing wellbeing of 
relationships

Whenua: Land, placenta
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A-NZ: Aotearoa New Zealand

AI: Artificial Intelligence

ALOS: Advanced Land Observing Satellite

ASTER: Advanced Spaceborne Thermal 
Emission and Reflection Radiometer

CP: Collaboration partner

eDNA: Environmental DNA

ESG: Environmental, Social, and 
Governance 

FEP: Farm Environment Plan

GDEM: ASTER Global Digital Elevation Map

GHG: Greenhouse Gases

GIS: Geographic Information Systems

GNSS-R: Global navigation satellite 
systems reflectometry

GPS-RO: GPS Radio Occultation

GRI: Global Reporting Initiative

IoT: Internet of Things

ISEs: Ion-Selective Electrodes

KIP: Kaitiaki Intelligence Platform

LiDAR: Light detection and ranging

LSMA: Linear Spectral Unmixing Analysis

MACs: Māori agribusiness collective

MIR: Mid-Infrared

NDSI: Normalised Difference Soil Index

NDVI: Normalised Difference Vegetation 
Index

NIR: Near-Infrared

NGO: Non-governmental Organisation

NZFAP: NZ Farm Assured Programme

RIAA: Responsible Investment Association 
Australasia 

SAR: Synthetic Aperture Rada

SDG: Sustainable Development Goals

SRTM: Shuttle Radar Topography Mission

TCT: Tasseled Cap Transformation

TDR: Time Domain Reflectometry

UAV: Unmanned aerial vehicles

UN: United Nations

WTP: Willingness-to-pay

XR: Extended reality

Acronyms  








