Reducing the reliance of New Zealand livestock systems on internationally produced feed

AgFirst Waikato

June 2023

Funded by:

Our Land and Water Contestable Fund

Presentation overview

- Global grain production overview
- New Zealand grain and feed production.
- Imports of grain and feed into New Zealand.
- Potential consequences of a shortage of internationally produced feed (IPF).
- Growing more grain.
- Reducing dairy industry reliance on IPF
- Summary

1. Global grain production overview.

Global grain production

- 2.8-2.9 billion tonnes of grain (wheat, maize, barley, sorghum, oats, rye and rice) produced annually.
- Top grains by tonnage harvested are maize (43%), wheat (29%), rice (19%) and barley (6%)
- 57% of all grain used for human consumption and the balance for livestock feed and biofuel.
- Significant differences in the end use profiles of the varying grains.

Worldwide grain production and end use

Worldwide grain production, 2019, m tonnes

Imports and exports

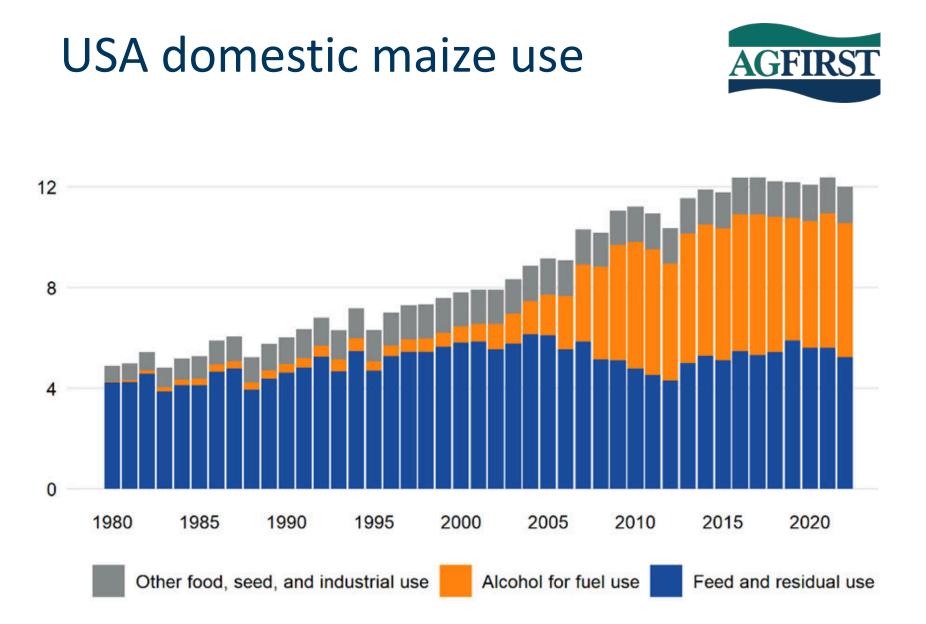
- Only 17% of grain production is exported with single commodity proportions ranging from 9% (rice) to 25% (wheat).
- Europe and North America are the main net exporters while Africa and Asia are the main importers.
- In 2021 the top exporters were USA (19.4%), Ukraine (8.2%, Argentina (8.1%), India (8.0%) and Russia (6.8%)
- China was the largest importer (11.3%) followed by Egypt (4.3%), Mexico (4.3%), Japan (4.1%) and Vietnam (2.9%).

Exporters and importers

Ukrain	ie R	lussia	France	Ur	nit	ed			MP	C	X	ER	S		
8.16%	66	79%	5 250%		ate	es	Chin	а	Saudi Arabia	Tur	key	Indonesia	Egy	/pt	Nigeria
terrer course of		and the second second							2.84%	2.5	5%	2.21%	4.3	1%	2.1%
Romania 3%	Poland 1.54% Bulgaria		rbia Italy 1996		19.	4%	11.39	%	Philippines f	tangladesh	Irar	1	Alger		
Germany	1.39%	,		Cana	ada		11.5	/0	2.18%	2.13%	1.669	6 1.5396	2.04	% 1.2	6%
2.14%	Hungary 1.23%				5.6	4%	Japan 4.07%		lsrael 1.11%	Iraq	United Arab		0.62% ().	Cola	
Indi	a	Vietnam Pakista	Argei	ntina	Brazil	Australia	Vietnam		Chinese Taipei 1.03%	0.15%	0.12%	1.7%			
		1.92% 1.499 Burna China	6				2.88% South Korea 2.86%		Yemen 0.85% Thailand 0.82%		Śri		Benin Angola		
8.02	%	0.84%		2%	3.22%	6.32%	Italy 2.54%	Germa		8	M	exico		Brazil	
2.27%		0.53%			Η	SouthAfrice	Netherlands	Z.10 Romania	% 1.56%	9 1.11%	4	27%	5	1.76%	1.44%
		FX			R		2.44% Spain	0.15% France 0.86%	Austria		Canad 0.82	3	1.4%	Peru 1%	

2.31%

Stocks to use rations (S/U)


- The S/U ratio indicates the level of carryover stock (end stock) for any given commodity as a percentage of the total global use of that commodity.
- Stocks-to-use is typically around 30-35% for wheat and 20-25% for maize.
- In 2022-23 China held 70% of global maize stocks,32% of soybean and 54% of wheat.
- If we deduct Chinese stocks, we get a more accurate picture of grain available for global trade.

Global grain stocks less China AGFIRST 3 Global Stocks to Consumption Ratio - Less China Sovbeans ------Wheat Corn 30% Stocks to Consumption (%) 25% 20% 15% 10% 5% 0% 2001/2002 2002/2003 2003/2004 2004/2005 2005/2006 2006/2007 2007/2008 2008/2009 2011/2012 2015/2016 2017/2018 2019/2020 2022/2023 2000/2001 2009/2010 2010/2011 2012/2013 2013/2014 2014/2015 2016/2017 2018/2019 2020/2021 2021/2022

Biofuel production from grain

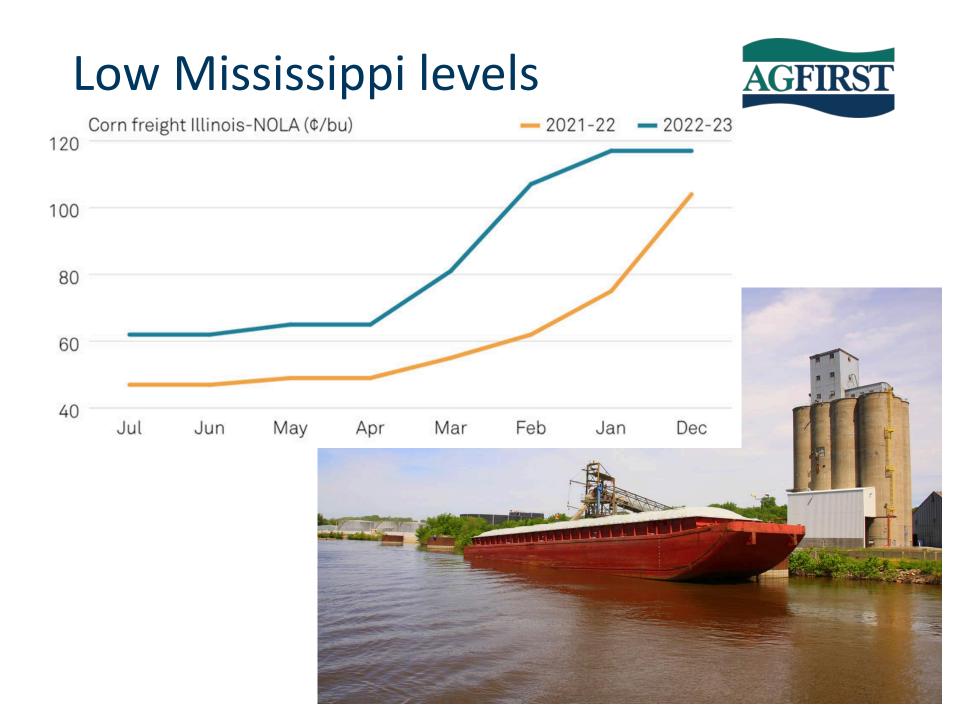
- Ethanol production rise six-fold in past two decades
- USA (55%) and Brazil (27%) largest producers
- Ethanol is mainly made from maize (60%) and sugar cane (25%).
- USA Renewable Fuel Standards rising minimum percentage of renewable fuel in all transportation fuel.
- Maize in USA government mandated low of 60.2m acres in 1982 to 90 million since 2018.
- Ethanol uses 45% of USA maize.

Global COVID pandemic

- Surge in consumers purchasing food for quarantine.
- Temporary sanctions on the export of grain (Russia, Ukraine, India and Vietnam).
- Oil prices dropped so shipping should have been cheaper but....
- Baltic Dry Index, a benchmark for sea freight rose due to increased shipping demand, Chinese port congestion.

Chinese port congestion

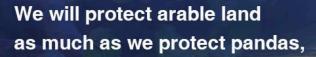
Baltic dry index



Climatic factors

- Extreme heat and drought in Europe diminished maize yields in Spain, Southern France, Italy, and the Balkans. Yields 18% lower than the 5-year average.
- In the USA, drought across parts of the western Corn Belt and Great Plains resulted in increased abandoned (unharvested) areas.
- Nebraska, Kansas and Colorado showed significant declines in both yield and harvested area.
- The USDA estimated that total maize production in 2022 was 9% lower than for 2021.
- Low Mississippi levels increased barge freight cost.

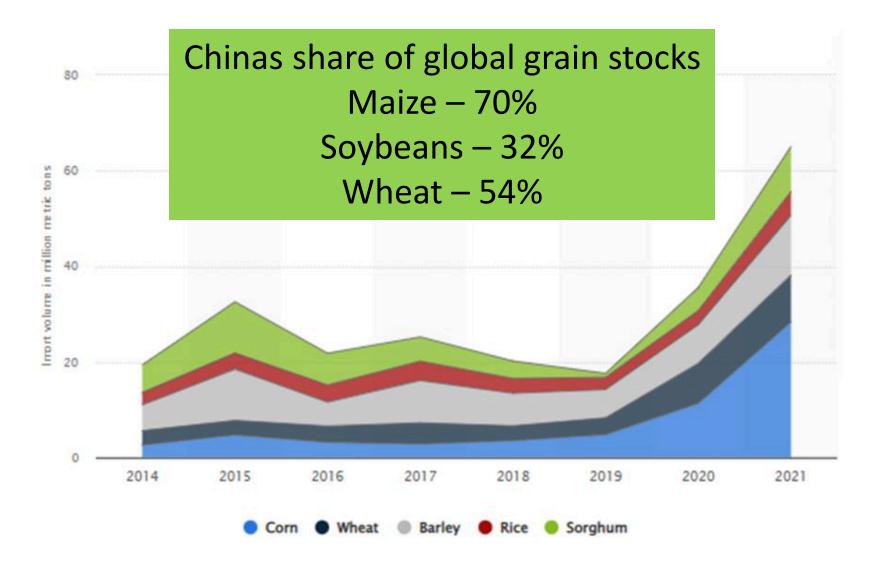
Chinese arable land



The Most Populous Nations on Earth

Estimated population by country (in million people) in 2003 and 2023*

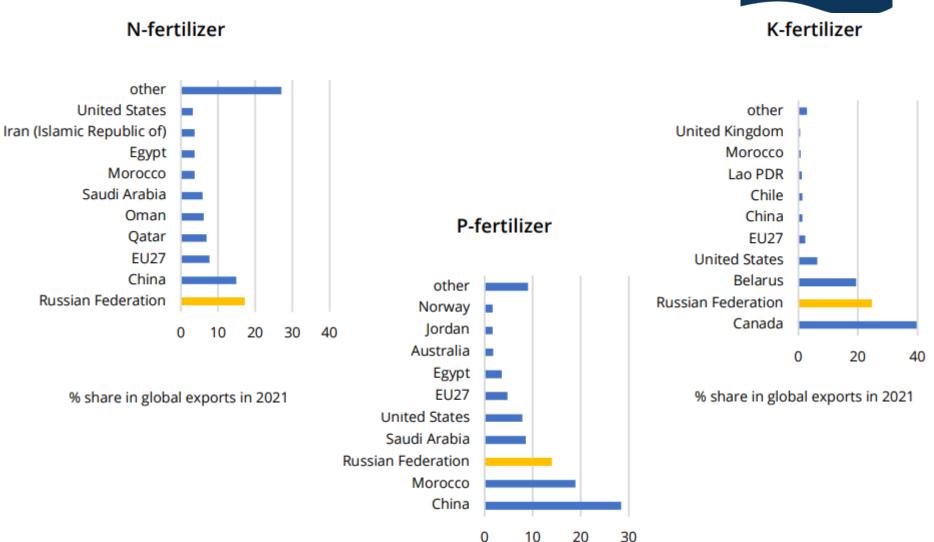
China 🧉


keeping above the red line of

1.8 billion mu (120 million hectares)

set by the government.

Chinese grain import volume



Russian-Ukraine war

- Russia and the Ukraine both major players in global grain trade.
- Russia the largest exporter of N, P and K fertiliser.
- Combination of conflict, sanctions and the severing of the Nordic Stream pipeline resulted in supply concerns for:
 - Grain
 - Oil
 - Fertiliser
 - Agochemicals

AGFIRST

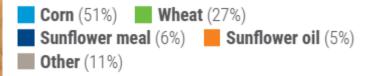
% share in global exports in 2021

Russia – fertiliser exports

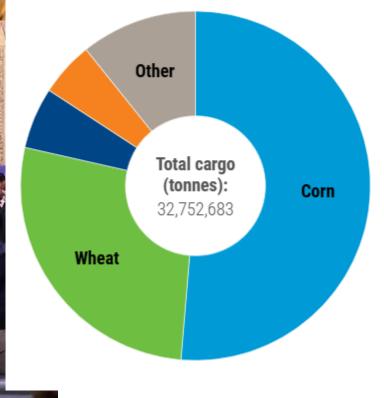
RUSSIA

LACKSEA

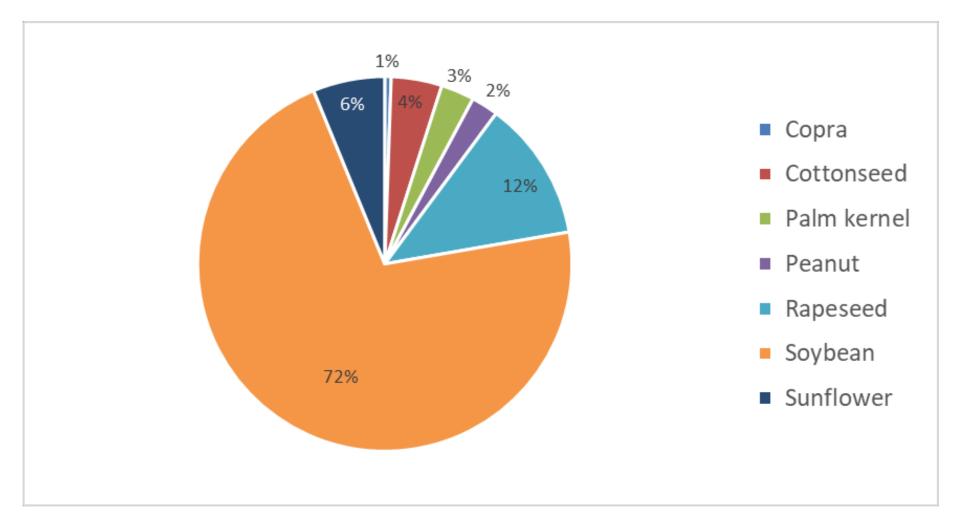
ANKARA


Crimean Peninsula

CHISINAU

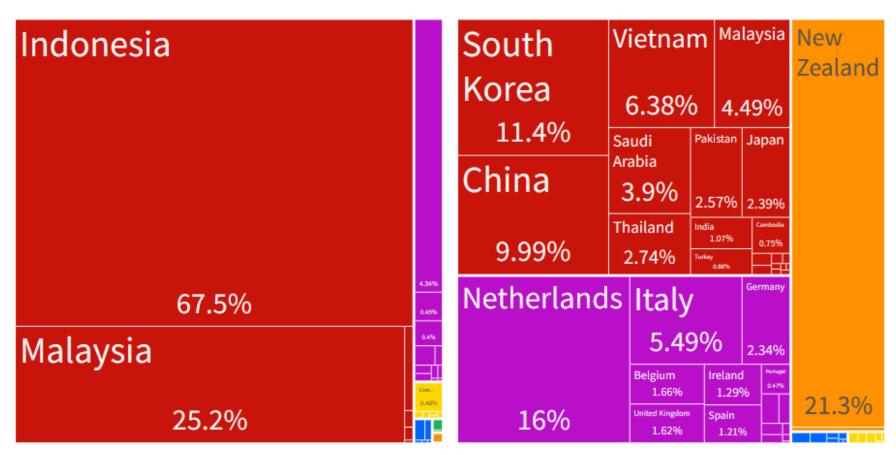

MOLD.

T

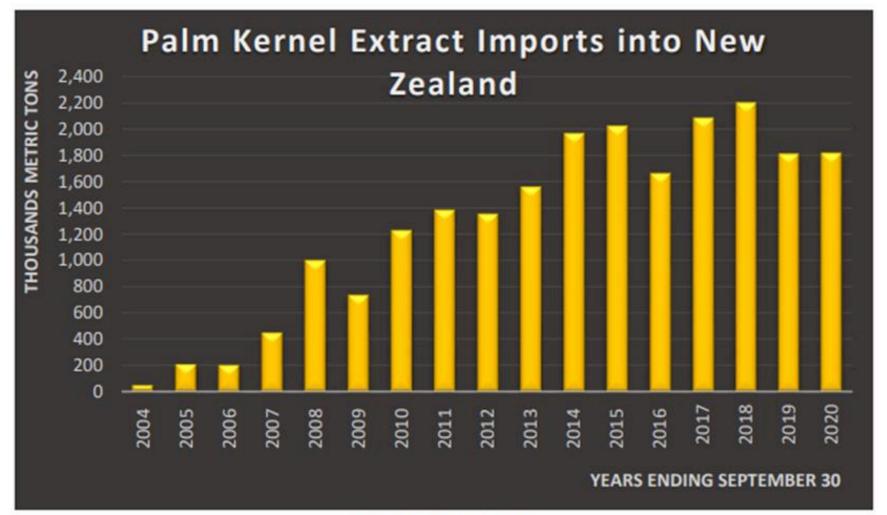

What has been shipped?

TURK

Plant protein production


Palm kernel extract (PKE)

- Palm kernel extract is a byproduct of mechanical extraction of palm oil.
- Used globally for stock feed, pet food and biofuel
- Indonesia and Malaysia produce 80% of the worlds total palm oil.
- Global oil production stable at 70-75 million tonnes per annum since 2017-18
- New Zealand is the top importer of palm oil extraction residues.


PKE exporters (left) and importers (right)

Source: trade data monitor

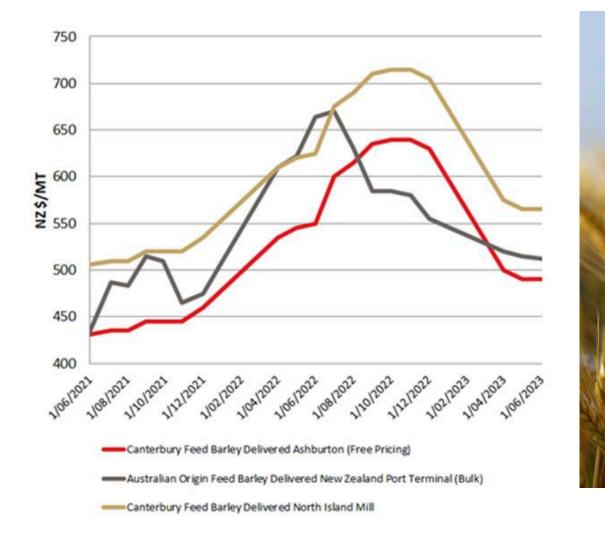
2. Grain and feed production in New Zealand

NZ grain production

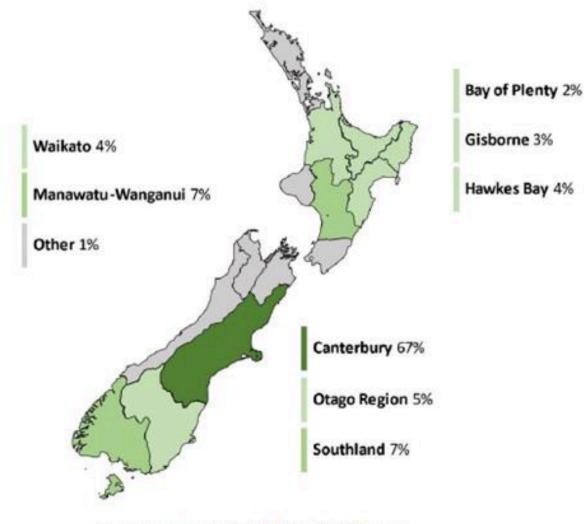
- In 2022, NZ arable farmers produced 900,000 tonnes of grain off 107,000 ha.
- Our favourable growing conditions mean average crop yields are some of the highest in the world.
- Cost of production is high due to small scale agriculture and high input costs.
- Particularly high cost to get grain from the South Island to the North Island

Palm kernel extract (PKE)

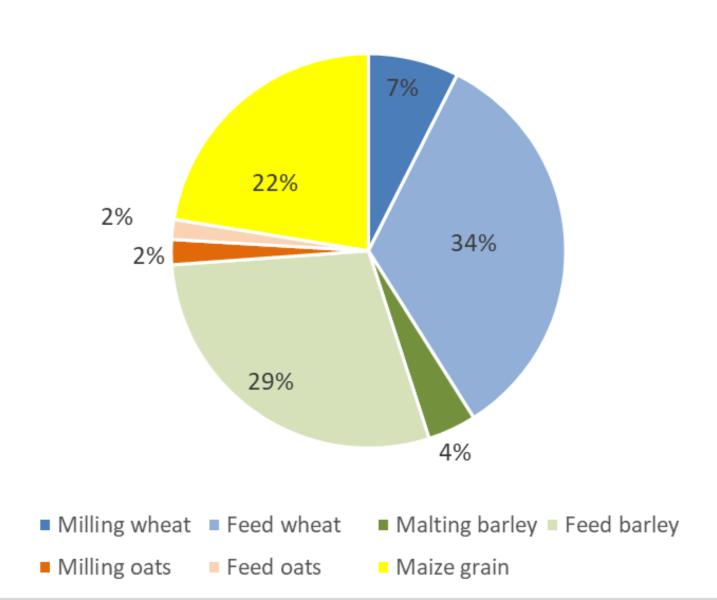
- Palm kernel extract is a byproduct of mechanical extraction of palm oil.
- Used globally for stock feed, pet food and biofuel
- Indonesia and Malaysia produce 80% of the worlds total palm oil.
- Global oil production stable at 70-75 million tonnes per annum since 2017-18
- New Zealand is the top importer of palm oil extraction residues.


Wheat production costs

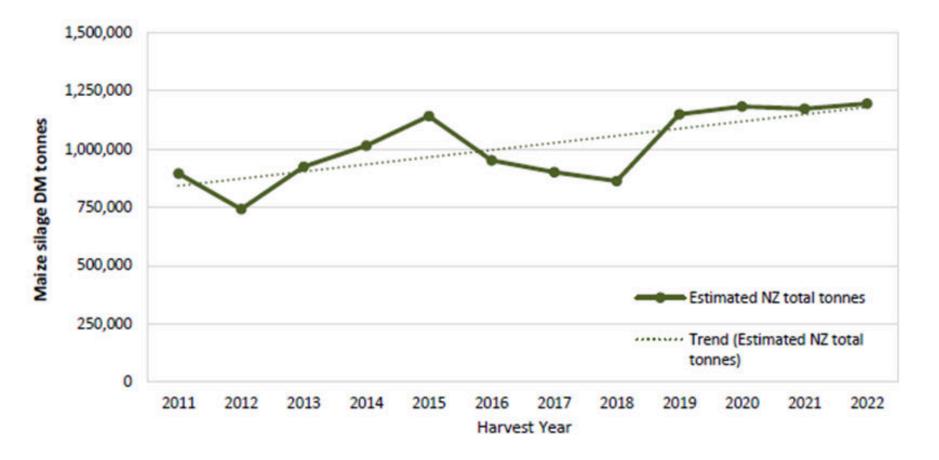
Cost Item	New Zealand	Australia (< 400 mm rainfall)*	Australia (> 400 mm rainfall)*
Average cost of production per ha (using contractor rates, excluding post-harvest costs)	\$3,684	\$457	\$1,140
Average grain yield (t/ha) Cost of production (NZ\$/tonne)	12.7 \$290	1.8 \$253	4.8 \$238


Comparative feed barley prices

Grain production by region



Source: StatsNZ and FAS/Wellington


Grain production by type

Maize silage production

Cropping gross margins

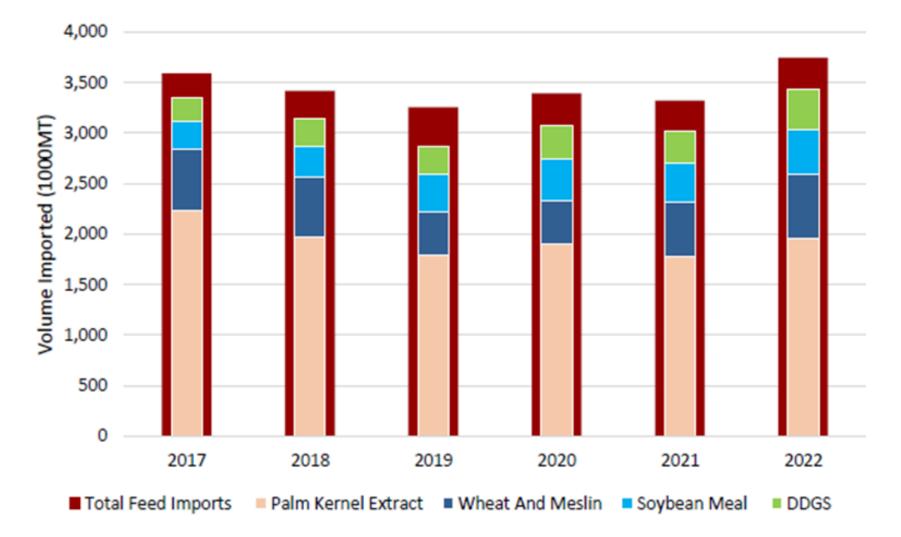
	(\$/tDM)	(\$/ha)
12.7	\$540	\$2,451
10.6	\$620	\$2,216
12.0	\$600	\$2,797
20.5	\$250	\$1,487
22.0	\$300	\$3,307
-	_	\$5,251
-	_	\$1,053
-	_	\$660
	10.6 12.0 20.5 22.0 - - -	10.6\$62012.0\$60020.5\$250

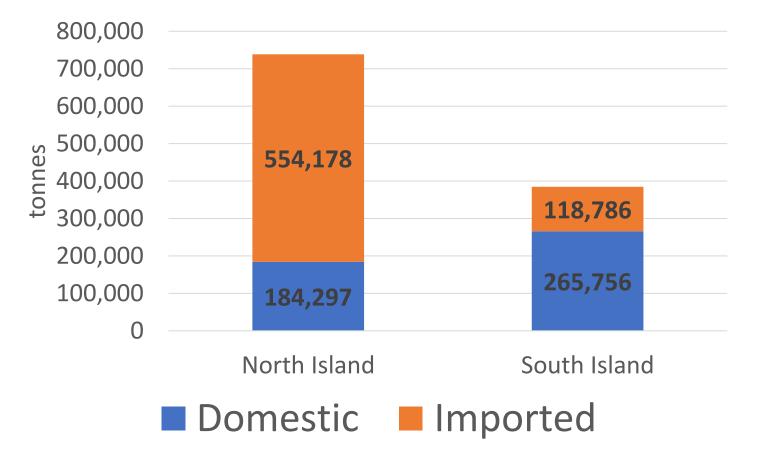
** Beef + Lamb NZ Economic Service – Sheep and Beef Farm Survey 2022 Crop gross margins provided by Foundation of Arable Research

Environmental impact

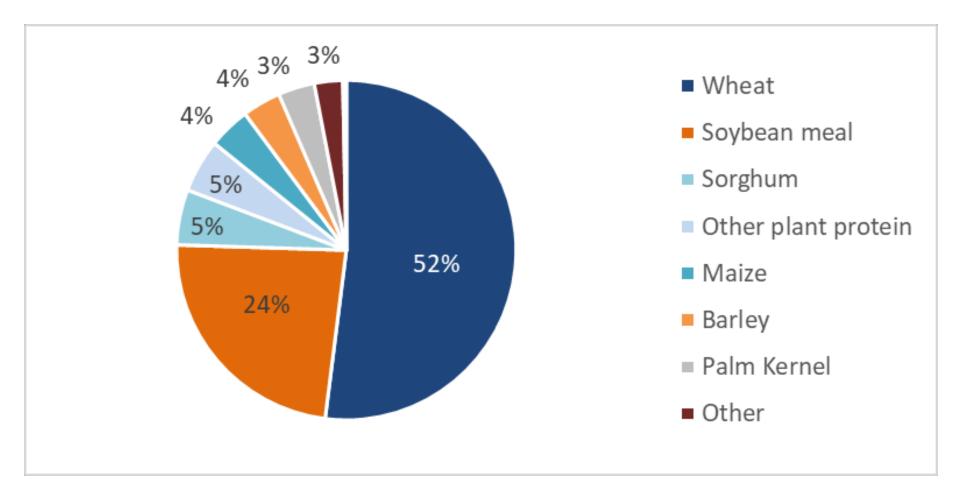
- Variable N losses from cropping systems depending on the crop rotation.
- Cereal rotations can have high N loss especially when they include vegetables or vegetable seed.
- Maize trials have shown low N loss provided a cover crop is planted after maize harvest.
- Greenhouse gas losses of cropping systems (no livestock) typically average around 2 tCO₂e/ha which is lower than sheep and beef (average 3.6 tCO₂e/ha) and dairy (9.6 tCO₂e/ha)

3. NZ grain and concentrate imports


NZ grain and feed imports


- New Zealand is a net importer of grain and concentrates.
- In 2022 New Zealand:
 - consumed 5.8 m tonnes of concentrates
 - grew 2.1 m tonnes of grain
 - imported 3.7 m tonnes of internationally produced feed (IPF).
- PKE is the largest volume import (54% of imports)

NZ grain and feed imports



NZFMA compound feed manufacture

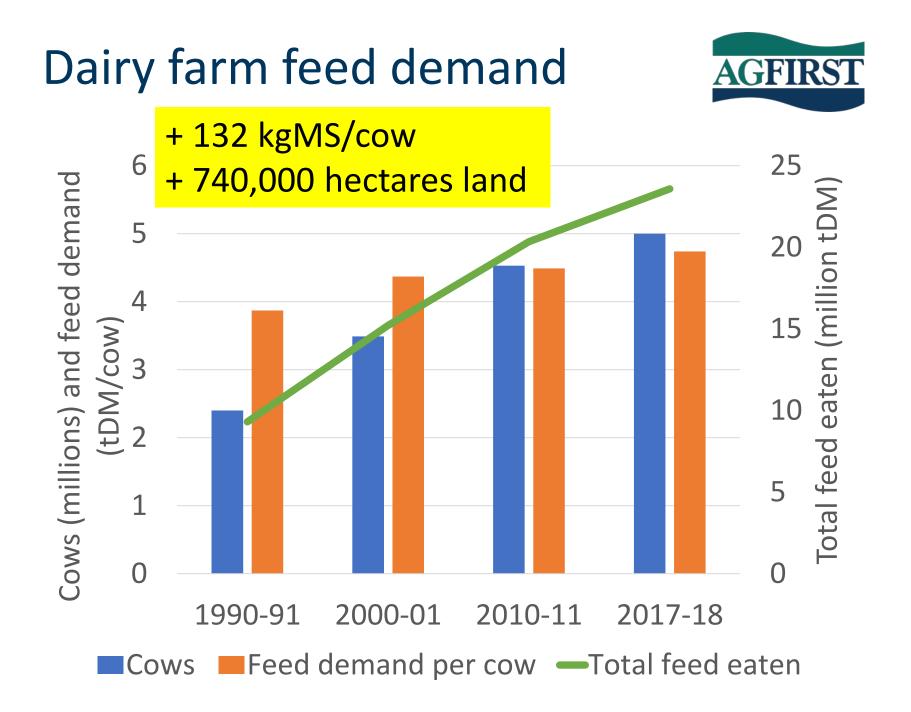
NZFMA imports for compound feed

AGFIRS

Who uses IPF?

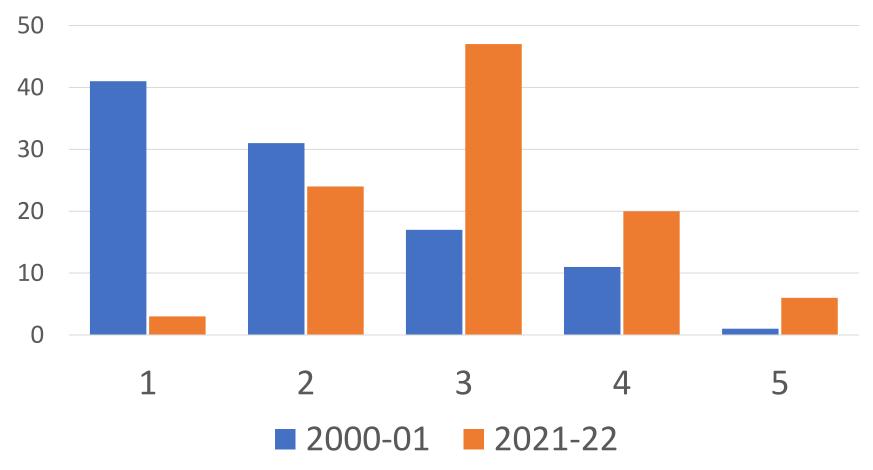
Dairy 75%

Poultry 12%

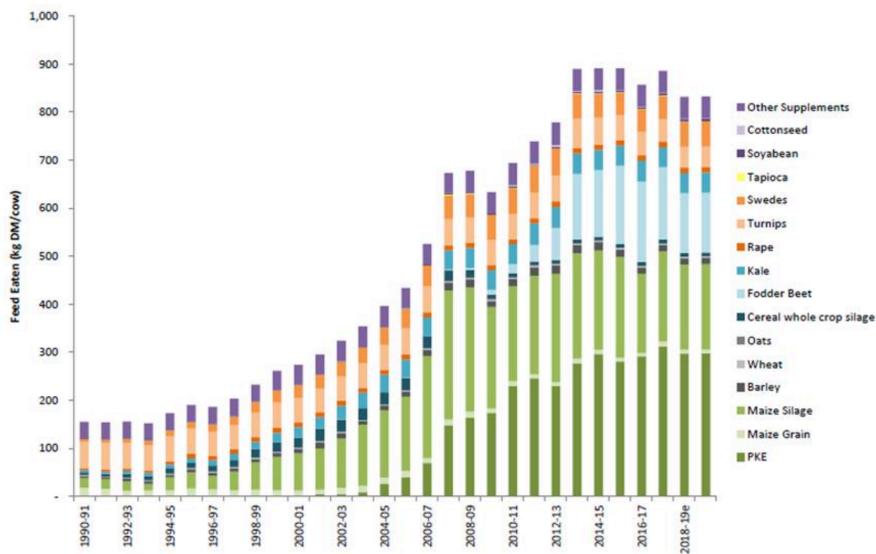

Other Animals 4%

Human Consumption 9%

Who uses IPF?



% of NZ dairy farms System 1 (all grass) to System 5 (< 70% grass)


Changes in cow feeding

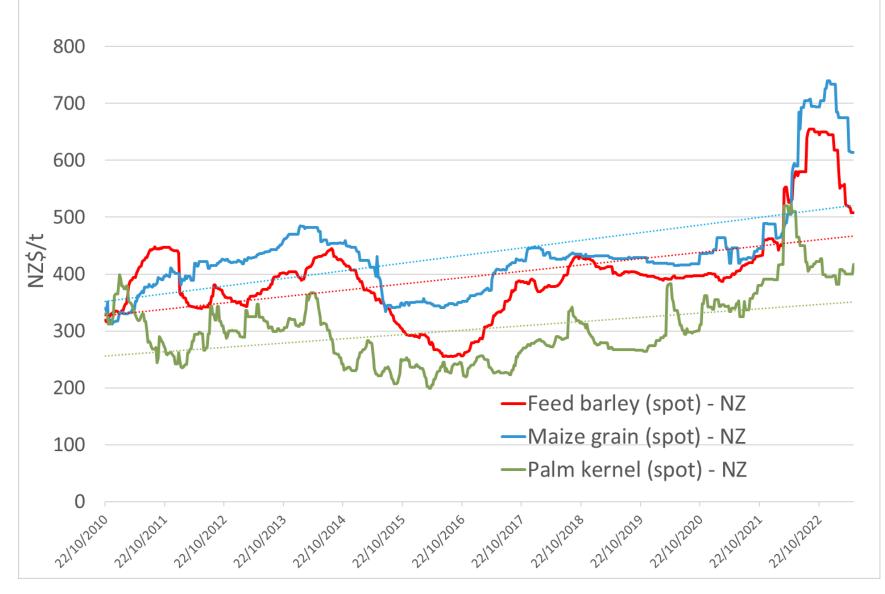
- 1990-91 to 2017-18 feed eaten by cows increased 157%
- 80% more cows, feed eaten per cow 3.87 tDM/year to 4.72 tDM/year.
- Compound annual growth rates for supplements:
 - Harvested supplements (e.g maize sil/barley) +5.6%
 - Grown supplements (e.g. beet, kale, swedes)+5.6%
 - Imported feeds (e.g. PKE) +9%

Total feed eaten on NZ dairy farms 1990-91 to 2018-19

Poultry

- Second largest user of IPF
- In 2022 19.2 million broilers and 3.7 million laying hens.
- NZ free of avian influenza, Newcastle disease and infectious bursal disease (IBD)virus.
 - No fresh poultry or in-shell egg imports
- Meat chicken industry highly efficient, vertically integrated.
- Poultry rations formulated using LCR software and global pricing is used to make purchase decisions.

- Declining industry (327,000 in 2011 vs 249,000 in 2021)
- High welfare standards and a high grain price have lifted price of production.
- Locally grown pork often can't compete with imported product which is produced using cheaper feed and less stringent health, welfare and environmental regulations.

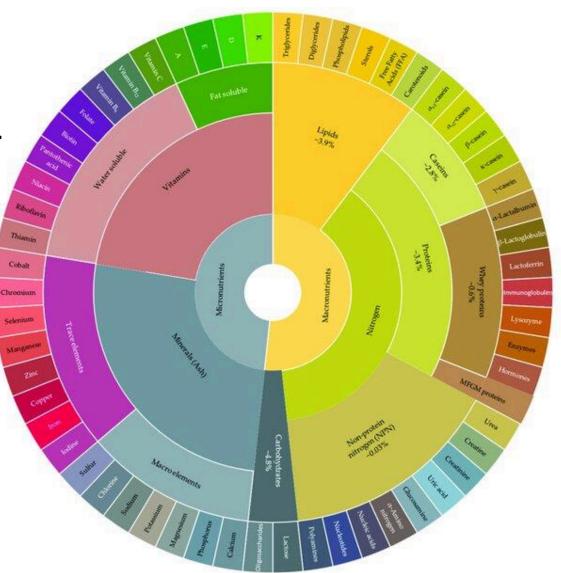

4. Impact of global feed price rises or unavailability

NZ feed spot prices (NZX)

Is a shortage of IPF likely?

- Grain exported by many countries, spread in crop type, location, time of harvest etc.
- Large amount used in poultry industry vertically integrated.
- Australia exported 40.6 million tonnes of grain in 2021. This is more than 10x annual NZ demand for IPF and more than 40x the amount of imported grain.
- PKE traded by two neighbouring countries higher risk

Trend away from palm oil?



- Western consumer resistance to palm oil use environmental, health, socio-economic.
- However, palm oil is very productive producing 6-10 times more oil per hectare than temperate crops.
- Palm oil (3.73 kg CO2e/kg refined oil) vs 2.49 kg CO2e/kg for rape seed and 4.25 kg CO2e/kg for soybean oil.
- Two companies looking at single cell oils made from yeast to replace palm oil.
- Range of climatic, pest and disease, government policy or geopolitical factors could impact availability and shipping of PKE.

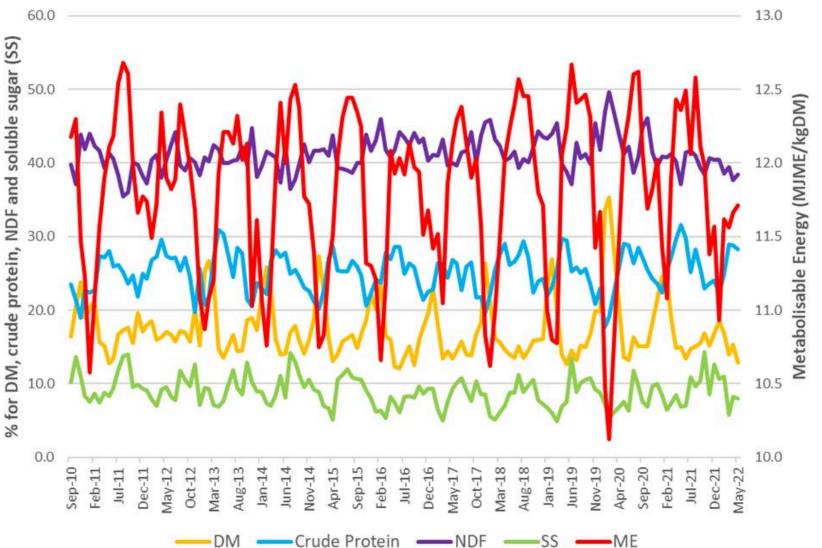
Impact of PKE on milk composition

- PKE changes fatty acid profile of milk.
- More short chain fatty acids.
- Milk with higher atherogenic and thrombogenic indices

What would happen if shortage of IPF?

- High prices/shortage of chicken and eggs
- More imported pork
- Impact on farm profitability.
- Not enough feed for the current national herd.
- 2.8 million less tonnes DM equal to entire feed requirement of 11% of the current national herd.
 - Less production
 - Could be hard to cull surplus stock
 - Potential animal welfare challenges
- How can we be less reliant on IPF?

4. Reducing NZ's reliance on internationally produced feed



Future demand for IPF – will we need more or less

- Pig and poultry demand likely to remain flat.
- Likely reached "peak cow" will future dairy systems need more or less IPF?
- Environmental regulations and labour shortages are driving an increasing focus on per cow production.
- While pasture yields are likely to remain stable, seasonal growth and quality likely to be more variable.
- Move away from bobby calves will increase calf meal requirements significantly.

Seasonal variation in pasture quality

AGFIRST

How can NZ reduce it's demand for IPF?

Increase supply Higher yields More area

Decrease demand Crop on farm Buy local feed

Increasing grain production in New Zealand

- More yield from the existing area
 - Identifying yield limitations, better hybrids and varieties, improved management practices
- More area planted in grain
 - Māori land
 - Lifestyle blocks
 - Sheep and beef
 - Smaller or uneconomic dairy farms
 - Dairy farms need infrastructure upgrades

Decreasing demand for IPF

- Approach needs to be targeted on dairy farms
- Instead of maintaining high stocking rates with IPF, reduce stocking rates and grow more feed on farm.
- Potential to decrease the environmental footprint of dairy farms.
- In line with published modelling done by DairyNZ which showed farm with decreased stocking rate had slightly lower profitability but less N and less GHG.

4. Growing grain an AGFIRST opportunity for whenua Māori

Māori land in Aotearoa

- 1.47 million hectares of land in NZ.
- Average block is 53 ha with 111 owners.
- Predominately North Is but some in South Is.

Region	No. of Land Titles	Area (ha)
Taitokerau (Northland)	5,478	138,936
Waikato (Waikato/King Country)	3,787	124,197
Waiariki (BOP/Waikato)	5,191	304,667
Tairāwhiti (Gisborne/East Coast)	5,365	269,160
Tākitimu (Hawkes Bay/Wairarapa)	1,417	88,042
Aotea (Whanganui/Taranaki)	4,045	412,558
Te Waipounamu (South Island)	2,235	66,129
Total	27,608	1,403,693

Why Māori land?

- Currently an underutilised resource.
- Small, fragmented blocks which are not really suitable for livestock operations.
- Landowners lack the capital to develop for horticulture.
- Modern arable practices (eg precision agriculture, reduced tillage) align with Māori values of kaitiakitanga.
- Utilising the land aligns deeply with other values including Manaakitanga.

Waikato/King Country case studies

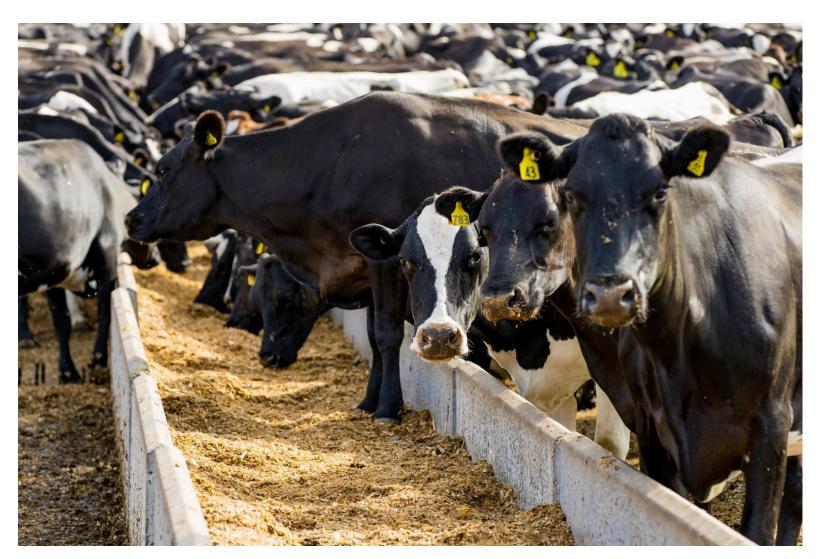
Criteria	Block 1	Block 2	Block 3	Block 4
Active governance	Yes	Yes	No	No
Administrator	Ahuwhenua	Ahuwhenua	Māori Trustee	Māori Trustee
	Trust	Trust		
Leased	Yes	Yes	Yes	Yes
Lease tenure	Monthly	Monthly	3 Years	7 Years
Total area (ha)	14.2	23.5	9.4	273
Effective area (ha)	12	21	9.4	90
Dominant soil type	Allophanic -	Allophanic -	Gley -	Allophanic -
	well drained	well drained	poorly drained	well drained
Dominant slope	<10 degrees	<10 degrees	<10 degrees	20%
				<10 degrees
NZLRI	LUC4e1, LUC	LUC4e1,	LUC3w1,	LUC6e15,
	6e9, LUC3w1	LUC3w1	LUC4e1	LUC6e1,
				LUC6s1,
				LUC3w1
Current land use	Pastoral-Maize	Pastoral-Maize	Pastoral-Maize	Store Livestock
	Silage	Silage	Silage/Store	
			Livestock	

Current land use and returns AGFIRST

	Block 1	Block 2	Block 3	Block 4	
Current land use and current returns					
Current Land Use	Pastoral- Maize Silage	Pastoral- Maize Silage	Pastoral- Maize Silage/Store Livestock	Pastoral- Store Livestock	
Lease (\$/eff ha)	\$650	\$550	\$760	\$300	
Annual Revenue	\$7,800	\$11,550	\$7,144	\$27,000	
Net Profit (\$)	\$4,972	\$8,337	\$2,218	\$20,335	
Net Profit per effective hectare	\$414	\$397	\$236	\$226	

Future land use and returns

	Block 1	Block 2	Block 3	Block 4
Effective area (ha)	12	21	9.4	90
Area suitable for grain (ha)	7	8.5	6	35
Remaining effective area for grazing (ha)	5	12.5	3.4	55
Maize grain return @ \$1,431/ha	\$10,017	\$12,164	\$8,586	\$50,085
Pastoral return @ \$400 (Blocks 1,2 &3) or \$300 (Block 4)/ha	\$2,000	\$5,000	\$1,360	\$16,500
Rates (\$)	\$2,828	\$3,213	\$2,915	\$3,165
Net profit (\$)	\$9,189	\$13,951	\$7,031	\$63,420
Net Profit per effective hectare	\$766	\$664	\$748	\$705
Increase in net profit/ha (%)	85%	67%	217%	212%


Key findings of discussion

- Land trusts who manage their own land have a high level of satisfaction with the control they have over their whenua.
- The active land trusts value the information and engagement they currently have with advisors.
- Many positive impacts from land trusts actively managing their land, including supporting kaitiakitanga, building links with communities and personal growth of trustees.
- Industry experts were extremely optimistic about the opportunities Māori landowners to grow maize for grain.

5. On-farm cropping – a solution for the dairy industry

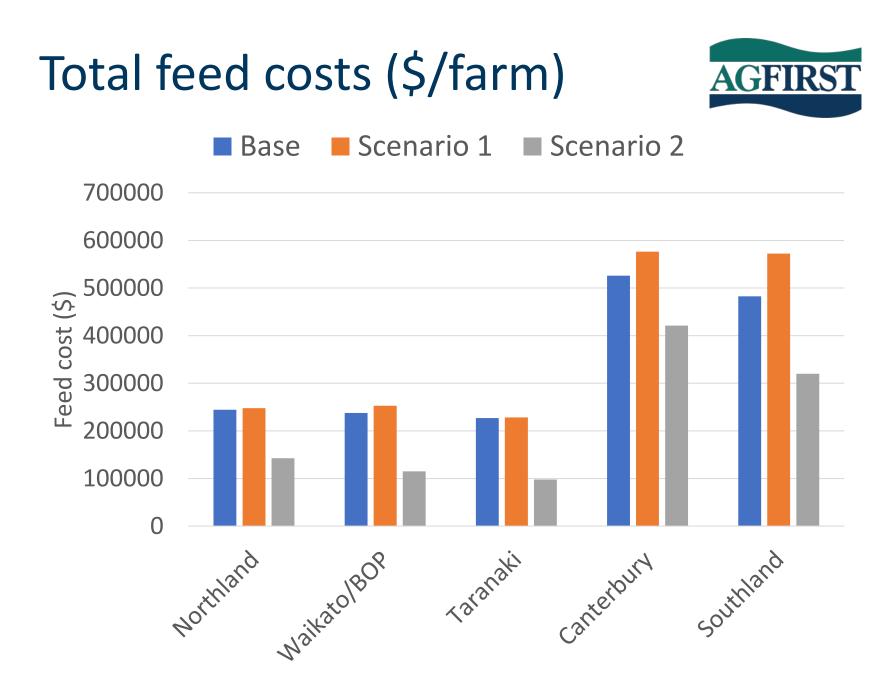
Decreasing demand for IPF

- Whole farm systems modelling using Farmax and OverseerFM
- Five regions Northland, Waikato/BOP, Taranaki, Canterbury and Southland
- Base models used data for the regions from DairyNZ Economic Farm Survey, Dairy Statistics and the 2019 Dairy NZ report on feed consumed in the dairy industry.

Physical parameters for base farms

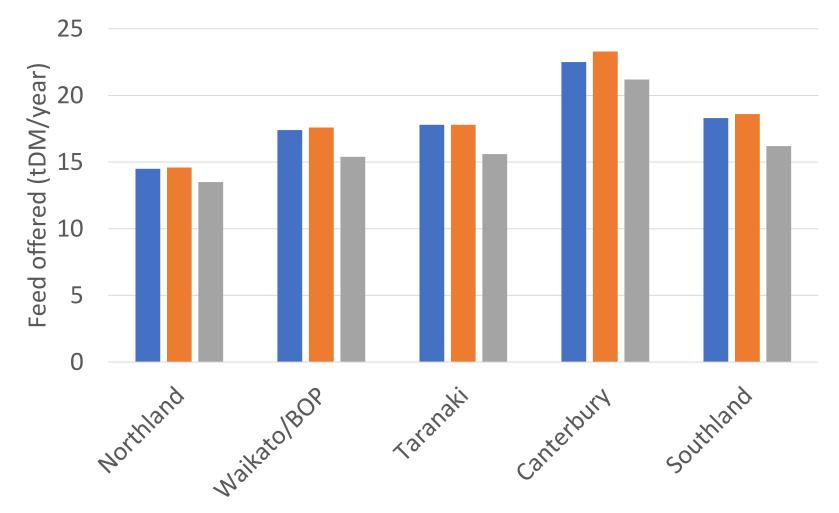
	Northland Base	Waikato/ BOP Base	Taranaki Base	Canterbury Base	Southland Base
Effective area (ha)	140	120	107	233	222
Stocking rate (cows/ha)	2.3	2.8	2.7	3.4	2.6
Potential pasture growth (tDM/ha)	10.0	13.6	12.4	16.0	12.4
Nitrogen use per total ha (excl. crops) (kg N/ha)	112	128	145	167	159
Replacement rate (% peak cows milked)	21	23	22	22	22
Planned start calving	14 July	14 July	24 July	31 July	9 August
Avg. BCS at calving	5.0	5.0	5.0	5.0	5.0

Financial parameters

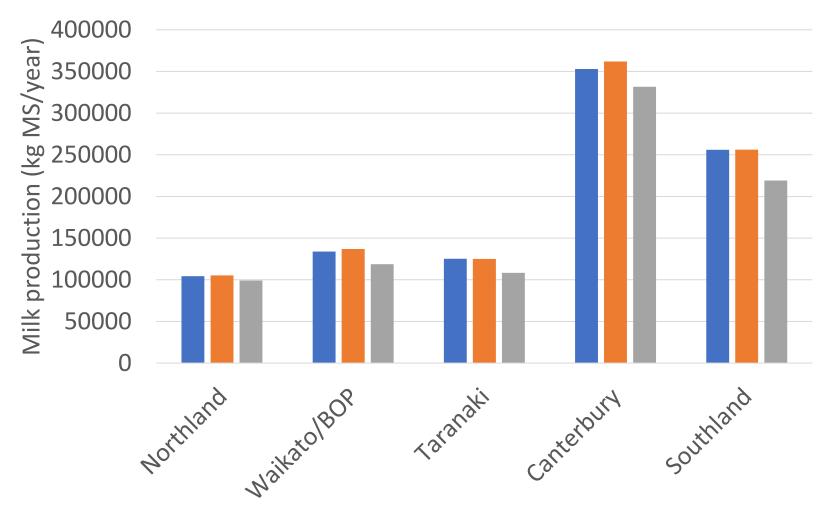


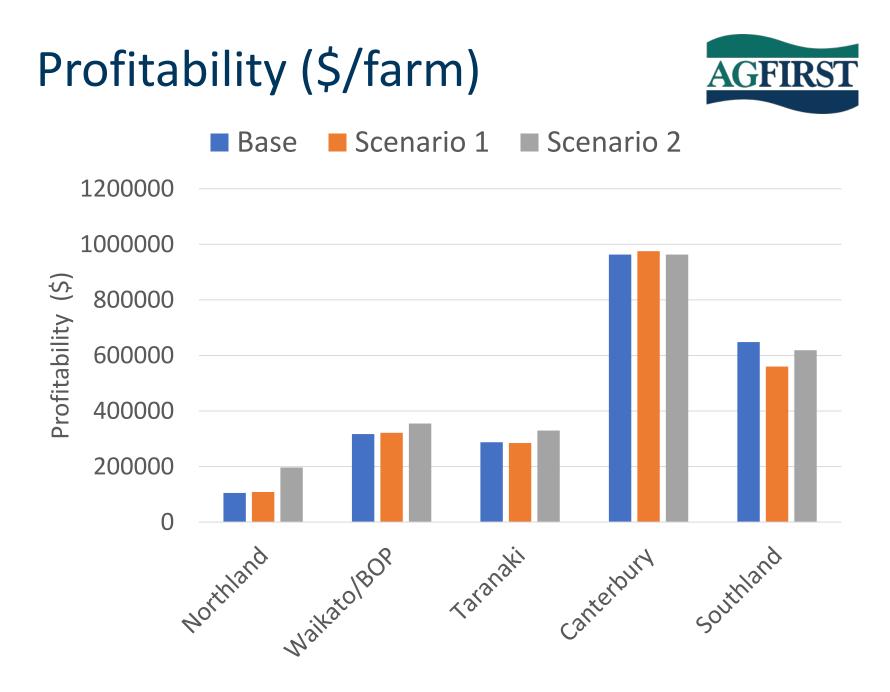
Milk price (\$/kgMS)	\$7.00
Pasture silage grown (\$/tDM)	\$200
Home grown maize silage (\$/ha stacked)	\$4,000
Bulb turnip grown (\$/ha)	\$1,800
Fodder beet grown (\$/ha)	\$3,150
Concentrate price (\$/tDM)	\$500
Imported maize silage (\$/tDM)	\$450
Imported pasture silage (\$/tDM)	\$400
Urea (\$/t)	\$1,300
Regrassing (\$/ha)	\$1,000

Alternative scenarios


- All of the base models used a mix of imported and homegrown feeds.
- To examine the impact of buying in all feeds or growing all feeds we created two new scenario's:
- Scenario 1 all feed imported excluding homemade pasture silage.
- Scenario 2 all feed grown on farm cows still wintered off in Canterbury and Southland as the IWG rules didn't allow on-farm wintering on crop.

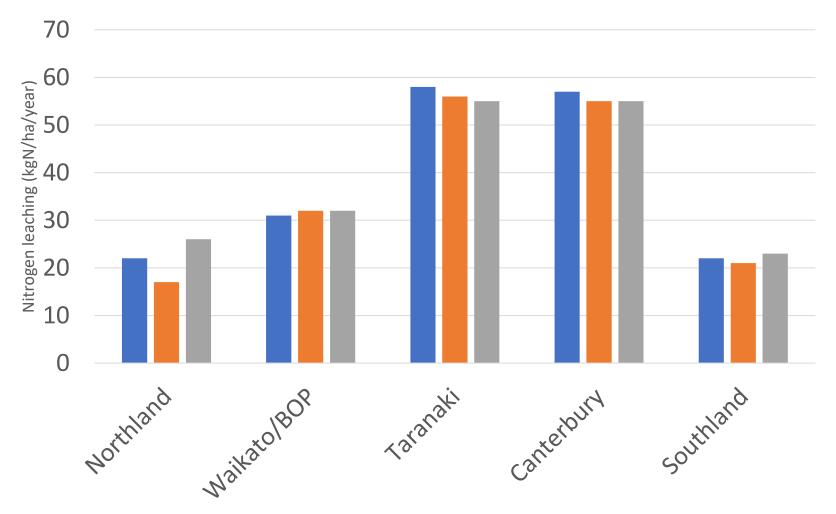
Total feed offered (tDM/yr)



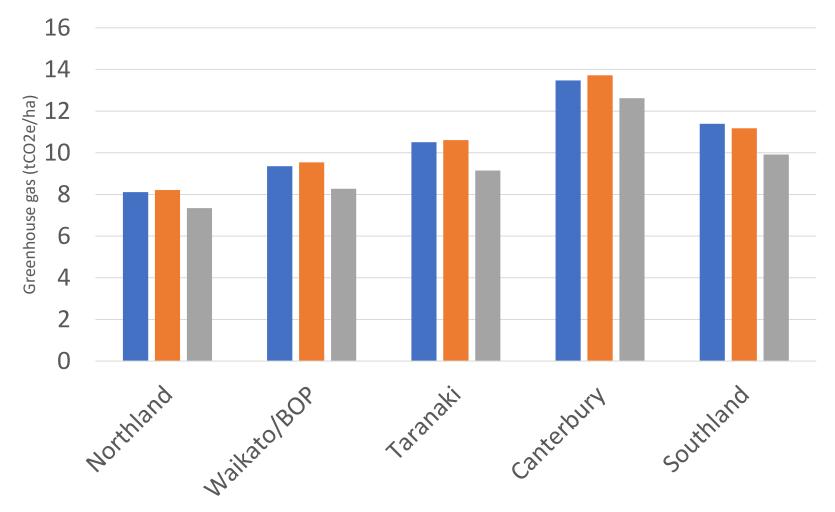


Milk production (kg MS/yr)

🗖 Base 🛛 📕 Scenario 1 🖉 Scenario 2



Nitrogen leaching (kg/year)


Base 📕 Scenario 1 📕 Scenario 2

Waikato Scenario 2 v Scenario 1

Milk Price (\$/kg MS)

		\$ 6.00 \$	7.00	\$ 8.00	\$ 9.00
\$	400	16%	4%	-1%	-4%
\$	450	21%	7%	1%	-2%
\$	500	28%	10%	3%	0%
\$	550	35%	14%	6%	1%
\$	600	43%	18%	8%	3%

Concentrate Price (\$/t DM) Sensitivity Analysis – Cant.

(\$/t

Concentrate Price

Canterbury Scenario 2 v Scenario 1

Milk Price (\$/kg MS) \$ 6.00 **\$ 7.00** \$ 8.00 \$ 9.00 \$ 400 0% -3% -4% -5% \$ 450 2% -2% -4% -5% DM) \$ 500 3% -1% -3% -4% \$ 550 4% 0% -3% -4% \$ 600 -2% 6% 0% -3%

Conclusions

- When compared to the Base, systems growing their own feed reduces milk production by 5-14%.
- Relying in homegrown feed was the most profitable option especially if the milk price was lower and the concentrate was over \$500/tDM delivered.
- When compared to the Base scenario, Scenario 2 (all home grown feed) decreased N loss to water in three regions but increased it slightly in two.
- Coupling a low N feed with a feed pad would be expected to further decrease N loss.
- Reducing stocking rate and cropping on farm reduced biological GHG by 6-13%.

6. Reducing our reliance on IPF – the way forward

Increasing NZ grain supply

- NZ imported 3.7 m tonnes of feed in 2002.
- 91% used for livestock feed
- Deduct soymeal, DDG and PKE we are looking to replace around 500,000 tonnes of grain.
- In 2022 New Zealand harvested 900,000 tonnes of grain off 107,000 ha.
- If we kept a similar crop balance and yield, we would need around 60,000 additional grain hectares.
- NZ has enough suitable land, we just need to drive land use change.

Increasing NZ grain supply

Scenario	Average grain yield (t/ha)	Total area to grow 1.4 million tonnes of grain (ha)	Additional area above the current area (ha)
2022 average yield	8.4	166,667	59,667
+5%	8.8	158,730	51,730
+10%	9.2	151,515	44,515

Reducing dairy farmer demand for IPF

- No more land required just dairy farm systems change.
- Fonterra have already recognised reducing imported feed can decrease on-farm GHG losses.
- They are also interested in embedded losses associated with feeds and PKE has the highest loss.

Conclusions

- On a global basis, only 17% of grain is traded between countries and there is growing demand for biofuel.
- NZ has relatively small arable industry and is a net importer of grain and feeds.
- Our main import is PKE from Malaysia and Indonesia and there are some concerns about long term supply.
- Seventy-five percent of IPF is used in the dairy industry and it is the major user of PKE.

Conclusions

- New Zealand could be less reliant on IPF by growing more grain and reducing dairy farm demand for IPF.
- The opportunities to grow more grain include getting more yield from existing acreage and converting suitable Māori, sheep and beef, lifestyle block or dairy land into arable.
- Dairy farmers could decrease stocking rate and grow more feed on farm.
- Modelling shows that this would decrease milk production but slightly increase profitability and improve environmental performance.

Thanks

- We acknowledge Our Land and Water for funding this project through their Contestable Fund.
- The authors thank all those who gave their time to this research including feed manufacturers, representatives of the NZ arable, dairy, pork and poultry industries.
- We also greatly appreciate the candid feedback provided by representatives of the Whenua Māori case study blocks and thank Julian Reti Kaukau for facilitating these sessions.