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Executive summary 
Managing water resources sustainably is crucial to New Zealand’s horticultural sector. It is apparent that 

these resources must be managed by optimising the use of rainfall and applied water to avoid water 

stress in crops. Orchardists are being required to monitor their use of water and many now use soil 

moisture measurement (through probes in the ground) as a means of better informing their irrigation 

management. While this is a major step forward and accurate information can be provided for the point 

measured, it is also recognised that orchard soils are often highly variable and further methods need to 

be implemented to create a cost-effective measurement network.  

The emergence of new spaceborne remote sensing instruments offer possibilities for optimised 

irrigation scheduling. Synthetic Aperture Radar (SAR) satellites, which is a form of microwave sensing, 

orbit over New Zealand on a very regular basis providing several advantages over conventional optical 

means. SAR is not affected by cloud cover, and it captures images day or night. Therefore, the ‘Kiwifruit 

leaf water content detection using Synthetic Aperture Radar (SAR) satellite technology’ research project 

investigated the capability of SAR to acquire a series of spatial foliar water level maps of kiwifruit during 

the growing season The graphical summary of the project is presented in Figure 1.  

 

Figure 1 Graphical project abstract 

The trial site was set up on the Māori owned Ngai Tukairangi Trust’s orchards situated at Matapihi, 

Tauranga. Two Hayward (HW) and four Gold (GA) actively managed kiwifruit blocks were monitored with 

a wireless sensor network to collect soil moisture readings at 300- and 600-mm soil depths. To assess 

soil moisture response to rainfall, daily climatic data was acquired from a weather station at Tauranga 

Airport, situated 3.2 km from the orchard. 

To create ground truth data from the canopy, eight sampling campaigns were completed to collect 

kiwifruit leaves at 3 sampling points within in each of the selected six blocks. The samples were processed 

and dried to obtain leaf water content (LWC expressed as %) in Eurofins analytical laboratory.  



This study relied on SAR instruments on board the Sentinel-1 satellite between 1st November 2021 and 

20 April 2022 with the addition of ICEYE satellite from 22 February 2022. The selected period overlapped 

with a significant portion of the seasonal foliar development cycle leading up to harvest. The Sentinel-1 

SAR datasets and image collections were acquired through Google Earth Engine, a planetary-scale cloud-

computing platform. The ICEYE images were received directly from the satellite operator and the pre-

processing was completed using an open-source software package. Three methods were tested for data 

extraction from SAR images regarding the spatial aggregation of pixel values, i.e., point-scale, zonal-

scale, and block-scale.  

Rainfall, soil moisture, foliar water content and SAR datasets were stacked as vertical layers and loaded 

into a geographical information system (GIS) to store, manage and analyse the data stack. The focus of 

this project was to develop a better understanding of the relations between the various data layers, to 

reveal the underlying spatial and temporal patterns, and to visualise the generated information in a 

meaningful way. Therefore, to address these objectives, the presented work was organised into five 

focus areas.  

1) Exploratory data analysis of the laboratory results to unfold the patterns in the laboratory results 

of LWC as a function of cultivars and time.  

2) A comparison of the fluctuation of LWC and soil moisture over time.  

3) The analysis of the sensitivity of SAR to LWC changes at various spatial scales for two satellites. 

4) Model development to generate a series of LWC maps from SAR and hydrological variables. 

5) A dashboard-driven visualisation of the generated time series information. 

Key findings and conclusions 
It was observed that HW kiwifruit leaves stored lower amount of water compared to GA based on the 

lab results. These findings were consistent across the monitored blocks. In general, the results revealed 

a decreasing LWC trend as the season progressed for both cultivars. 

For each block, a moderate positive linear relationship was observed between soil moisture and LWC. 

LWC followed the soil moisture fluctuations over time, however, soil moisture levels were not 

homogenous across the orchard. This was unexpected as previous field observations and information 

from existing soil databases indicated that the soil cover and soil properties were mostly homogenous 

across the Matapihi orchards. 

Pair plots, statistical distributions and density curves were generated to capture the relationship 

between the SAR data and LWC measurements as a function of variety. The fundamental SAR backscatter 

response to the water contained by the target was confirmed by this study. HW variety with lower LWC 

resulted in lower backscatter intensity while higher SAR values were observed for the GA variety with 

generally higher LWC. In general, increasing LWC resulted in increased SAR backscatter intensity, 

indicating a positive linear correlation. These findings suggest that SAR was sensitive to the dielectric 

properties of the foliage governed by LWC changes and variety was a principal factor.  

However, SAR is also affected by other physical characteristics of the canopy, such as geometry, density, 

structural elements, surface roughness and biomass. The assessment of the effects of these features on 

SAR intensity was out of the scope for this study.  



Several statistical models were developed and tested to predict LWC from SAR. A simple multivariate 

linear regression approach was chosen to create the final model and generate the spatial layers of LWC 

for each Sentinel-1 satellite pass over at Matapihi.  

The best model performance and lowest uncertainty occurred at the block-scale using Sentinel-1 data 

with the addition of hydrological variables, i.e., rainfall, soil water deficit and soil moisture. This process 

resulted in an R2 of 0.77 and 0.85 and root mean squared error (RMSE) of 0.99 and 1.04 % when 

evaluated using the Leave-One-Out and repeated K-fold cross-validation methods, respectively. 

Although the ingestion of hydrological attributes led to marginal improvements in correlation, the error 

values were reduced by a considerable 0.1 % LWC at the block level. 

The accuracy of Sentinel-1 based LWC predictions at the zonal and point-scale delivered R2 of 0.67 and 

0.74 and RMSE of 1.48 and 1.49 % for the K-fold and Leave-One-Out cross-validation, respectively. These 

results indicate that sub-block level LWC mapping would introduce higher error rates and more 

uncertainty compared to the block-scale approach. This is likely to be caused by the noise contained in 

the 10x10 m pixel size SAR data. Hence, the appropriate spatial averaging of SAR pixels is key for reliable 

LWC mapping. From an irrigation management point of view, block-scale information would be suitable 

for most growers as most irrigator systems are not equipped with variable rate capability within a given 

block.  

The LWC prediction from ICEYE delivered lower error levels but lower correlation as opposed to Sentinel-

1 predictions at the zonal scale. Due to the number of image captures and data points, ICEYE data-based 

modelling was only completed at the zonal scale. LWC was predicted with R2 of 0.59 and 0.64 and RMSE 

of 1.22 and 1.37 as a result of K-fold and Leave-One-Out cross validation, respectively. The assessment 

suggests that ICEYE SAR contains valuable information for LWC mapping and with a daily revisit cycle it 

can be a powerful tool to capture LWC changes over time with high temporal and spatial granularity.  

This study presented a workflow and a GIS-assisted methodology that allows the development of a 

geospatial dashboard to demonstrate how a series of LWC maps can be utilised by growers as a decision 

support tool. The operational online dashboard integrated the spatial layers and visualised LWC in an 

actionable way so it can be easily interpreted and accessed by the end users.   

The outcomes of this work revealed the spatial and temporal variability of LWC over 6 monitored kiwifruit 

orchard blocks during a 5-month period. The research found that Sentinel-1 and ICEYE SAR satellite data 

carry useful information for foliar water content mapping which can inform irrigation management and 

orchard management. Due to the weather and daylight independent feature of SAR, the presented 

approach can be further improved by better models and more input data, and it should be implemented 

in the near future to detect water stress and to avoid over-irrigation events. 

In summary, the findings of this project, the adoption of remote sensing, IoT and geospatial technologies 

directly feed into the development of advanced tools for kiwifruit growers. These data-driven platforms 

enable orchardists to make better decisions around increasing yield, preserving freshwater resources, and 

reducing fruit value variability within the orchard. Ultimately, the proposed solution will help the users to 

tailor their precision irrigation strategies to eliminate both under and over-irrigation thereby preserving 

freshwater resources.  



Challenges, limitations, and recommendations 
• The conducted LWC measurements were useful and satisfactory to prove the proposed concept. 

However, relative LWC measurements could provide even more valuable information. The 

relative LWC method can determine the amount of water a leaf compared to what the leaf can 

hold at full turgidity or saturation level. 

• A larger and more dense ground truth dataset related to more SAR images would likely improve 

model performance and reduce uncertainty.  

• There was no straightforward way to extract irrigation management data from RICADO’s online 

platform, thus irrigation was not included in the analysis or the modelling.  

• SAR signals (backscatter) showed sensitivity to biomass; therefore, this effect will need to be 

considered by introducing other remote sensing products or by creating a biomass indicator 

metric from SAR.  

• As SAR is sensitive to the geometric characteristics of the foliage, it is recommended to assess and 

quantify these impacts with further research for more accurate predictions. This would lead to 

the development of a clearer picture of the fundamental interactions between SAR signal and the 

foliage. 

• Following the anomaly of Sentinel-1B satellite, Sentinel-1A SAR ensured data availability through 

the crop growing season with a 12-day repeat cycle. The replacement of Sentinel-1B will be 

launched in the first half of 2023 which will reinstate the 4–6-day revisit time over New Zealand. 

• On account of the spatial resolution and the noise contained in Sentinel-1 images the best 

prediction results were delivered at the block-scale. Sub-block level LWC information would be 

valuable, although to address that orchardists would be required to develop sub-block level 

irrigation management capability.  

• The results presented in this report proves and supports the value of Sentinel-1 and ICEYE 

backscatter measurements for vegetation monitoring and LWC estimation. However, to develop 

a viable irrigation support system SAR and optical satellite data fusion is recommended. This 

combined approach would require a more complex workflow and data fusion process. On the 

other hand, the recommended method would increase the frequency of image acquisitions and 

provide several spectral bands as additional input variables for the models.  

• The ingestion of rainfall, soil water deficit and soil moisture into the modelling improved the 

model performance, it limits the methodology to be used only in areas where these datasets are 

available.   

• Since soil moisture is correlated to the foliar water levels, IoT soil moisture data can help to site 

specifically calibrate the LWC model, hence improved accuracy can be achieved.  

• The generation of a universal kiwifruit water stress index would make the interpretation of the 

results more straightforward for growers. However, to achieve that a better understanding of 

LWC at saturation, stress and wilting point levels will be necessary from plant water dynamics and 

plant physiology perspectives. 

• Based on the reported results and the potential of remote sensing in foliar water monitoring, the 

collaborators recommend extending the presented project and complete more detailed research 

on LWC at the regional scale. A regional scale project would be able to create improved, robust 

models and find solutions to the challenges and limitations revealed during this trial.  

  



Introduction 
Aotearoa New Zealand’s kiwifruit sector contributed 38%, by far the highest value to horticultural 

exports in 2020 (Horticulture New Zealand, 2020). The current outlook sees global trade volumes 

continuing to rise by 45% by 2025 and by 2030, the sector’s GDP contribution will double. As a response, 

a further 2800 hectare is being licensed to kiwifruit production in the next few years (New Zealand 

Kiwifruit Growers Incorporated, 2020). However, water access has been identified as one of the main 

risk factors that investors will face (ANZ, 2019).  

Fundamental plant processes and fruit expansion are intolerant of water stress, implying that even short 

periods of water limitation can exert severe, irreversible effects on the final fruit value (Judd et al., 1986; 

Judd and McAneney, 1987). Additionally, with forecasted longer and more frequent droughts, higher 

evapotranspiration in summer will effect water availability, influencing the establishment of new blocks 

as well as the viable operation of kiwifruit orchards (Masson-Delmotte, V., P. Zhai, A. Pirani, S. et al., 

2021; Tait et al., 2018). With strong worldwide demand for production growth, changing climate and 

dependency on sufficient water supplies, irrigation will become an even more essential part of orchard 

management.  

The volume of water stored within the soil available to the plant at a point in time (i.e., plant available 

water) is provided by rainfall, or by irrigation systems extracting water from surface and ground. Net 

depletion of ground water can occur when water use is not optimised (Deurer et al., 2011). In the past, 

irrigation has exceeded local resources and led to community based irrigation schedules to ensure 

economic production (Judd et al., 1989). Recently, lower than normal precipitation resulted in declined 

ground water levels which was further depleted by irrigation. In 2021, the prolonged rainfall deficit 

triggered the longest water restriction in recent history in the Bay of Plenty, which is responsible for 80% 

of the country’s kiwifruit export. Irrigated orchards coped better with dry conditions and generally 

produced higher yields compared to non-irrigated orchards. Most assessments of the sector’s current 

and future water footprint support the overall conclusion that a substantial increase in irrigation will 

drive the greater water use, which will likely exceed allocable resources (Aqualinc Research, 2007; Hume 

and Coelho, 2011; Tait et al., 2018; White et al., 2009). 

Beyond the importance of freshwater for horticulture, local biodiversity and aquatic habitats are 

dependent on sufficient water quality. Therefore, protecting waterways’ base flow is essential to 

preserve their healthy, environmental, and cultural values. Since irrigated land use has already been 

increasing, council plans are concentrated around increased reporting of water takes, declined consents 

and cultural impact assessments directed by the National Policy Statement for Freshwater Management 

(Ministry for the Environment, 2020). 

For the reasons listed above, growers are progressively required to justify their water take through 

rigorous reporting depending on the use of surface water, ground water or community water schemes. 

Some orchards are separated into irrigation stations while others apply a single irrigator, meaning that 

blocks may receive water regardless the plant’s demand causing over- and/or under-watering, 

contributing to the risk of nutrient leaching. Ultimately, growers will need to be more efficient with water 

use to maintain market edge, to achieve compliance and to conserve freshwater resources while facing 

the projected competition for water from other users. 



Despite kiwifruit plants’ significant water demand, they are also sensitive to waterlogging as a result of 

extreme rainfall events or excessive water use, causing reduced productivity (Bardi, 2020). On the other 

hand, growers often induce controlled water stress to increase the amount of dry matter and sugar 

content in the fruit for higher returns. Consequently, to reduce water use while enhancing economic 

value and productivity, the sector would benefit from an optimised water allocation strategy that is 

driven by orchard specific water demand. 

It is generally accepted that to optimise the use of water resources, a continuous monitoring of the water 

status in plant-soil systems is critical. Delineating orchard zones that are well hydrated or under various 

degrees of water stress can guide irrigation management to avoid unnecessary overirrigation. One way 

to help grower’s decision making is through systematic leaf water content (LWC) observations. Analysing 

LWC indicates the underlying stresses by reflecting the integrated status of plant water, plant physiology, 

and environmental conditions (e.g., soil water and evaporative demand) (Jain et al., 2021; Jin et al., 2017; 

Quemada et al., 2021; Zhang and Zhou, 2019). LWC correlates well to changes in soil moisture triggered 

by rainfall or irrigation, thus capturing the evolution of LWC across the orchard can deliver valuable 

information for growers. Despite the proven value of LWC, to our knowledge, kiwifruit LWC monitoring 

at scale has never been investigated in New Zealand. 

Traditional thermogravimetric LWC measurements require leaf samples detached from the plants before 

the tests. In contrast, LWC can be estimated by collecting reflectance in optical (visible, near-infrared, 

and short-wave infrared) domains of the electromagnetic spectrum using hand-held spectrometers 

directly on the plant [16]–[19]. While these methods are highly accurate and commonly used to collect 

ground truth, they suffer from the point-scale nature of the information, repeatability, cost, and labour 

limitations. 

As a proxy for LWC, soil moisture can be used to validate LWC estimations and vice versa (Gao et al., 

2013; Lyons et al., 2021). Soil water potential and dielectric soil moisture sensing techniques have been 

receiving growing interest in precision agriculture and horticulture to guide irrigation scheduling. To 

bridge the gap between field and catchment scale observations, spatially distributed sensors are 

connected through wireless networks or Internet of Things (IoT) for automated data collection. IoT 

supplies reliable, timeseries type information at specific locations, however, it is labour intensive and 

expensive to deploy dense sensor networks over large orchards or across regions. 

Since the detection of canopy characteristics is of great importance across broad geographic scales, 

airborne and spaceborne optical sensors have been utilised to estimate spatiotemporal changes in the 

foliage (Lyons et al., 2021). However, the acquisition of spectral information through optical satellites is 

undermined in New Zealand. The sensor’s dependency on reflected sunlight from the land surface and 

the frequent cloud cover present major disadvantages for LWC monitoring. 

To overcome these challenges, Synthetic Aperture Radar (SAR) satellite technology has been increasingly 

utilised for Earth observation. SAR is an active microwave sensor; it is known to be an “all weather” and 

“24 hour” instrument because it can acquire data through clouds, and it does not require sunlight for 

capturing imagery. Consequently, these unique characteristics make SAR ideal for frequent vegetation 

monitoring. Several studies have indicated that phenological stages can be captured using SAR, and there 

is a significant correlation between LWC and SAR data (El Hajj et al., 2019; Han et al., 2019; Khabbazan 

et al., 2019; Quemada et al., 2021). This is mainly due to the well-known sensitivity of microwaves to the 



dielectric properties of the vegetation closely relating to the water mass in the above-ground plant 

components (Konings et al., 2019).  

The cost of monitoring seasonal soil moisture and canopy vigour has been a major constraint for 

orchardists and there is no currently available tool that provides imagery based spatial information on a 

systematic basis. This proposal aims to fill this void and develop a scalable, LWC mapping tool that is 

centred around a unique fusion of highly accurate IoT observations, the water sensitivity of SAR, and 

invaluable horticultural expertise.  

The projected outcome has the potential to revolutionise how we manage land and water by quantifying 

plant-soil-water interactions and improved irrigation scheduling nationwide. Furthermore, kiwifruit 

canopies present an ideal scenario for microwave-based satellite observations since the short 

wavelength SAR instrument will primarily pick up the signal from the foliage. Since New Zealand has 

diverse landscapes and soil types, a novel IoT and public SAR imagery driven management tool will 

enable growers and rural professionals to map out and address LWC variations adequately to save water 

and enhance orchard performance. 

The specific aims of the proposed project considering OLW’s strategic plans are: 

• to create benefit for orchardists, Māori landowners and the community in general by creating a 
scalable solution.  

• to reduce water usage to preserve our freshwater resources while enhancing productivity 

• to leverage and expand sensor data by the support of remote sensing to monitor kiwifruit LWC 
with the aim of generating more consistent high returns across landscapes  

• to co-develop a practically useful, interpretable, and actionable tool to provide LWC information 
on a regular basis in a form of spatial dashboards distinctly designed with growers for growers 

Methodology 

Site description and experimental design 
This work was carried out on Ngai Tukairangi Trust’s orchard blocks situated on Matapihi Peninsula (S 

37.69995, E 176.19556) in Tauranga. The orchards were established on highly productive, well-drained 

loam textured soils formed on mainly flat to undulating terrain. According to the New Zealand Soil 

Classification system, the main soil order is Allophanic on the peninsula providing ideal soil depth wand 

non-restricting layers for kiwifruit root development (Lilburne et al., 2012).  

These orchards are well-managed and have been monitored for several years via RICADO’s automated 

remote data system. Orchard maps, block outlines and cultivar information were provided by Ngai 

Tukairangi Trust’s managers. To monitor soil moisture and foliar water content six orchard blocks were 

selected with the assistance of orchard managers. Within each of the six selected blocks, leaf samples 

were collected from three spatially distributed sampling sites (Figure 2).  

The soils and the foliage were monitored from 1 November 2021 to 28 March 2022. This period overlaps 

with the critical phenological development stages of the kiwifruit, including leaf formation, flowering, 

fruit set and fruit growth leading up to harvest. During this 5-month period the role of water 

management is critical to achieve high returns which is driven by yield, fruit size and weight, sweetness, 

and dry matter. Therefore, the detection of water stress and the management of variable water demand 

are essential during the canopy and fruit development cycle, especially during the summer months.  



 

Figure 2 Location of leaf sampling sites and soil moisture sensors at Matapihi orchards 

The blocks represent Hayward green (HW) and gold (GA) kiwifruit cultivars with various maturity stages 

and variable characteristics (Table 1). One of the blocks was chosen from an area covered by hail netting 

to investigate the potential effect of plastic net on the satellite signal.  

Table 1 Specifications of the monitored orchard blocks at Matapihi 

Block number Eurofins ID Variety Description 

40 1 HW No irrigation 

109 2 GA Organic 

12 3 HW Mature vines 

30-31b 4 GA Old, mature vines 

33 5 GA Young vines 

77 6 GA Mature vines with hail protection cover 

Soil moisture network 
In the centre of each of these blocks Teros 10 soil moisture sensors were installed at 300 mm and 600 

mm depths in October 2021 (Figure 3). To convert raw sensor readings to volumetric soil moisture, a 

generic calibration formula was applied that are suitable for most mineral soils and offer an accuracy of 

3 % or 0.03 m3m-3 as per the manufacturer’s guidelines. The sensors were connected to RICADO’s IoT 

network and online platform which provided near-real time data access. The soil moisture readings were 

extracted with a 15 min interval. 



 

Figure 3 Installation of Teros 10 soil moisture sensors, the telemetry unit in the field and the Teros 10 sensor.  

Foliar leaf water content (LWC) data collection 
LWC, often expressed as percentage, is one of the appropriate measures of plant water status as it 

reflects the physiological consequences of cellular water conditions. Traditionally, LWC represents the 

weight change between fresh and oven dried leaves and often expressed as a percentage (Jin et al., 

2017). During the study period, 8 sampling campaigns were conducted to build a LWC timeseries for the 

selected sampling sites to capture a season-wide variation of LWC. A total of n=144 leaf samples were 

collected, n=48 from HW blocks and n = 96 from GA blocks by technicians from Eurofins Laboratory, New 

Zealand.  

The sampling site positions were recorded with a high accuracy GNSS device (Trimble TDC600 with 

Trimble correction service) and marked with physical markers to ensure repeatability for regular 

sampling. From each sampling site, 20 random leaves of various sizes were collected, bulked, and given 

a unique ID. The sampling sites corresponded to a bay, which can be approximated with a 3x4 m 

rectangle shape. The leaves were placed in self-sealing plastic bags to avoid water loss (Figure 4).  

 

Figure 4 Leaf sampling by a Eurofins technician and an example of the bulked sample containing 20 leaves 



The sampling campaigns were timed as closely as possible to expected satellite pass over times. Leaf 

samples were collected early in the morning when the leaves were rehydrated. Once collected, the 

samples were cool stored in polystyrene boxes and sent to the lab on the same day to determine LWC. 

The samples were weighed and then dried in at 65°C for 48 h to a constant weight. In this study, LWC 

can be defined as the proportion of water (%) of the total fresh weight calculated as per Eq. 1. 

 
𝐿𝑊𝐶 (%) =  

𝐹𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔) − 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡(𝑔)

𝐹𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)
 × 100 Eq. 1 

Weather data 
Daily rainfall and soil water deficit datasets were obtained from the nearest weather station located at 

Tauranga Airport through NIWA’s CliFlo climate database. CliFlo is an open-access online platform that 

provides access to New Zealand's National Climate Database. The climate station is situated about 3.2 

km north of the main office building at Matapihi orchards. To retrieve the datasets the clifro R package  

was utilised (Seers and Shears, 2015).  

Remote sensing data 
Initially, the project was designed to use the SAR instruments on board the Sentinel-1 satellites. The 

Sentinel-1 constellation comprises of two polar-orbiting satellites, namely Sentinel-1A and Sentinel-1B. 

The Sentinel-1 mission has been collecting data since 2016 as part of ESA’s Copernicus program which 

facilitates full and open license to all Sentinel data through an open access hub for research. Sentinel-1 

satellites are mounted with C-band (wavelength = 5.6 cm) SAR and provide imagery with an 

unprecedented 4-6-day repeat cycle when both satellites are considered. Based on the last five years of 

operation over Matapihi, they provided data every 4.5 days as average. Figure 5 depicts the Sentinel-1 

acquisition segments, sensor view directions and image footprints overlapping the Matapihi peninsula.  

 

Figure 5 Sentinel-1 orbits and the location of Matapihi orchards within the satellite footprints 



However, due to a malfunction of Sentinel-1B occurred on 23 December 2021, the revisit time dropped 

to 12 days with only Sentinel-1A acquiring data (Figure 6). Therefore, the major body of the analysis and 

modelling was executed only using Sentinel-1A images. Even though the frequency of acquisitions 

decreased, the amount of data collected was adequate to evaluate the potential of the proposed 

methodology. 

To mitigate the long-term impact of Sentinel-1B anomaly in the future and the feasibility of the proposed 

methodology, the use of other SAR satellites was considered. The commercial Earth Observation 

company ICEYE (Finland) operates a fleet of SAR satellites. ICEYE was integrated into the Third-Party 

Mission data portfolio of the European Space Agency (ESA) which allows the distribution of ICEYE images 

for sponsored research programs free of charge. Thus, a proposal was submitted to ESA to gain access 

to ICEYE satellite tasking. The application was accepted on 15th February 2022, and the project was 

awarded with access to a limited number of ICEYE scenes.  

The ICEYE constellation consists of 16 X-band (wavelength = 3 cm) SAR satellites as of the beginning of 

2022. The constellation will continue to grow offering sub-daily revisits for a given location. In this study, 

the images were captured in Strip Mode that provides a ground range resolution of 2.24x2.24m in 

vertical-vertical (VV) polarisation.  

The data collection timeline (Figure 6) presents all available Sentinel-1 image acquisition dates, the 

captured ICEYE image dates alongside with soil moisture sensor installation and foliar sampling 

campaigns. 

 

Figure 6 Data collection timeline 

SAR image access and pre-processing 
Downloading and processing a series of Sentinel-1 satellite imagery is a time-consuming task that requires 

large amount of storage and computing power for executing the pre-processing and analysis. Therefore, 

to generate a consistent and extendable dataset, the Google Earth Engine (GEE), a cloud-based, geospatial 

computing platform was utilised in this study (Gorelick et al., 2017).  

The Sentinel-1 satellite data was obtained through GEE’s Python API and the GEEMAP Python package 

implemented in Jupyter Notebooks (Wu, 2020). This approach ensured the generation of a consistent, 

analyses-ready image collection from GEE’s pre-processed Sentinel-1 ground range detected image 

catalogue (S1_GRD). GEE’s standard pre-processing includes orbit metadata updates, border noise 

removal, thermal noise removal radiometric calibration and terrain correction. The steps are described in 



more detail in the documentation of GEE based on the Sentinel-1 toolbox (“Sentinel-1 algorithms,” 2021). 

In this study, as an additional step, a mono-temporal Refined Lee speckle filter was applied to reduce 

speckle noise in individual scenes (Mullissa et al., 2021, p. 1). 

The raw ICEYE images were pre-processed using the Sentinel Application Platform (SNAP), an open 

access and free software environment made available by ESA (SNAP, 2018). The pre-processing followed 

the workflow recommended by the ICEYE user guide, including radiometric calibration, terrain correction 

and speckle filtering which produces a comparable, analysis ready image. A visual comparison of 

Sentinel-1 and ICEYE images is shown in Figure 7. 

 

Figure 7 A visual comparison of Sentinel-1 and ICEYE images over Matapihi. Images in the bottom right illustrate the expected 
penetration depth of the two different microwave signals, i.e., C-band for Sentinel-1 and X-band for ICEYE. 

SAR backscatter and data extraction methods 
Active microwave platforms, including SARs, measure the magnitude of artificially generated energy that 

is reflected, scattered back from the land surface or the targeted objects (Schmugge et al., 2002; 

Seneviratne et al., 2010). SAR image pixels represents measurements of physical processes, expressed as 

the backscattering coefficient that quantifies signal intensity and the power loss caused by the interaction 

with the target. Due to its wide dynamic range, the backscatter is usually converted to decibels (dB).  

To obtain more information from the target, some SARs can operate in various polarisation modes, such 

as co-polarised (HH or VV) or cross-polarised (VH or HV) (Ulaby et al., 1996). The first letter denotes to the 

polarisation of the transmitted wave whereas the second letter refers to the polarisation of the received 

wave (V-vertical, H-horizontal). As a result of data extraction from dual polarised Sentinel-1 SAR images, 

two variables were gained, namely VV and VH backscatter with 10x10 m pixel size.  

The measured backscatter value is primarily governed by the dielectric constant of the vegetation canopy. 

The dielectric property of the foliage is a function of the free water content of the leaves. Fundamentally, 

increased vegetation water content will result in an increase in free water and therefore greater dielectric 

constant. If other backscatter affecting factors are not taken into account, higher vegetation water 



content leads to higher backscatter values which enables the use of SAR for monitoring the changes in 

vegetation water content.  

However, vegetation exerts a significant effect on the backscatter by causing a complex scattering 

mechanism. Consequently, the total backscatter of the kiwifruit canopy is a result of several contributions 

from various parts of the foliage. The additional controlling factors are the size, shape and orientation of 

canopy elements, surface roughness, the growth stage and biomass (Dobson and Ulaby, 1986; Mattia et 

al., 2003). Both Ferrazzoli et al. (1992) and Toan et al. (1992) found that σ0 increases with increasing 

amount biomass until a saturation point. The detailed understanding of these controlling factors is beyond 

the scope of this project; therefore, this report focuses on the effect of LWC on the backscatter. 

An added amount of uncertainty is present in the image interpretation as SAR remote sensing (and active 

systems in general) inherently suffers from a phenomenon called speckle or noise. The effect can be 

reduced by statistical noise modelling or averaging and filtering techniques. Due to the noise contained 

by SAR images, three methods were used for extracting pixel values from the SAR images (Figure 8). These 

data extraction approaches allowed the assessment of whether the various spatial resolution SAR images 

are suitable to derive block or sub-block scale LWC information.  

Method-1 used the coordinates of the leaf sampling points to extract the values of the overlapping SAR 

pixel, meaning that no spatial averaging was applied during data extraction. This method gained n=144 

observations at will be referred to as point-scale.  

Method-2 used buffer zones around the leaf sampling points with a given radius depending on the satellite 

platform to compute the spatial mean of image cell values intersecting with the individual zonal buffers. 

This method resulted in n=144 observations and will be referred to as zonal scale.  

Method-3 generated spatially averaged block level observations by aggregating the LWC lab results from 

the 3 sampling points and obtaining the average of all pixel values within the block outline. The pixels 

were considered if the pixel centroids fell within the block outline. This method will be referred to as 

block-scale.  

 

Figure 8 Data extraction methods from SAR images at three spatial aggregation scales 



All three methods were applied to the Sentinel-1 image collection; Method-2 was applied with a 7.5 m 

radius buffer zone. As the pixel size of ICEYE images is 2.24x2.24m, the mean VV values were calculated 

on a zonal basis using Method-2 with a 3 m buffer radius.  

Two SAR indices were also calculated and used in the modelling as they allow the integration of 

information gained from the various polarisation configurations into a single variable. Cross ratio (CR, Eq. 

2) and Radar Vegetation Index (RVI, Eq. 3) were observed to correlate well with vegetation water content 

and biophysical parameters in other crops (Khabbazan et al., 2019; Nasirzadehdizaji et al., 2019; Shorachi 

et al., 2022). Thus, these two indices were derived from Sentinel-1 VV and VH backscatter using the 

formulas below: 

 
𝐶𝑅 =

𝑉𝐻

𝑉𝑉
 Eq. 2 

   

 
𝑅𝑉𝐼 =

4VH

VV + VH
 Eq. 3 

 

Results and discussion 

Soil moisture and rainfall 
The dynamic sensor response to the timing and magnitude of daily rainfall events, drying cycles and the 

temporal trends was observed to be reasonable during the 5-month observation period (Figure 9). The 

response to rainfall events was more pronounced in the 300 mm layer. During the study period, three 

large precipitation events occurred, each of them reaching 50 mm daily accumulated rainfall.  

 

Figure 9 30-min soil moisture timeseries at 300 mm and 600 mm soil depths with daily rainfall as bars 



These events triggered increased soil moisture levels along the monitored soil profile. As expected, the 

soil moisture variability and fluctuation were greater at the 300 mm soil depth than at the 600 mm depth 

due to meteorological factors. Except for Block 40, the 600 mm soil depth contained more soil moisture 

as compared to the 300 mm depth. Irrigation patterns can be observed in Block 33 during the summer 

months. LWC responded well to soil moisture changes as shown in Figure 10. In general, the study period 

can be characterized with a decreasing trend regarding soil moisture. This trend was reflected by the LWC 

measurements, although some instances show increases due to a rainfall event prior to leaf sampling.  

This response and relationship between LWC and soil moisture was expected which supports the 

hypothesis investigated in this project. The C- and X-band SAR signals are not able to penetrate the canopy 

to acquire information from the soil, hence these SARs dominantly acquire information from the foliage. 

As soil moisture and the LWC levels are highly correlated, the capability to use SAR to monitor LWC allows 

the characterisation and enhanced understanding of the dynamics and process of the soil-foliage water 

system. 

 

Figure 10 Soil moisture traces and the evolution of leaf water content over time. Light blue lines indicate soil moisture at 300 
mm depth, dark blue marks soil moisture at 600 mm depth while green dots with error bars depict mean leaf water content and 

standard deviation within a block. 

Exploratory data analysis of laboratory results 
The histograms and density distribution charts in Figure 11 reveal that there was a significant difference 

between the cultivars in terms of the measured LWC. The LWC ranged between 67.8 and 77.6 % with a 

mean of 72.9 % and standard deviation of 2.5 % for HW. These results show similarities with results of 

Miller et al. (1998) in terms of water content of leaves during a water stress experiment on HW kiwifruit 



vines. Their observed range was 68-74 % over a 200-day monitoring period. In case of GA, LWC varied 

between 71.4 and 81.9 % with a mean of 76.4 % and standard deviation of 2.3 %.  

HW variety stored lower amount of water in the leaves than the GA cultivar regardless of management 

and whether the blocks were irrigated or not. These results suggest that the two cultivars can be 

characterised with different water storing capacity in the foliage. Therefore, this attribute will be a 

significant factor for deriving LWC from satellite images. 

 

Figure 11 Leaf water content (LWC) histogram and density curves (A) and boxplots represent the value ranges for the Green 
(HW) and Gold (GA) varieties. 

The method used to derive LWC is rapid, simple, and low-cost. The laboratory observations provided 

valuable information on the ratio of leaf dry matter and water content and their change over time. While 

the generated LWC dataset is sufficient to rapidly test the proposed remote sensing methodology, it poses 

a number of limitations. 

For instance, the chosen LWC method is not sufficient to quantify the maximum water holding capacity 

of the leaves which would allow the calculation of relative LWC. Relative LWC estimates the water content 

of the leaves at a given time as a function of maximum water the leaf can hold at the fully hydrated stage, 

i.e., at full turgidity (Barrs and Weatherley, 1962). Secondly, the relative LWC approach would also allow 

the calculation of water content on a surface area basis or mass basis (Féret et al., 2019).  

Despite the mentioned advantages, the relative LWC method is more time consuming, more expensive 

and more labour intensive than the presented LWC extraction method. Therefore, we recommend the 

consideration of relative LWC techniques or the investigation of other advanced methods in the next 

phase of this research. 

Temporal LWC patterns 
Figure 12 displays the temporal change in LWC at each block on a multiple time-series plot. In each facet, 

the block mean is presented by coloured lines according to variety, while the corresponding standard 

deviation is depicted by shaded areas. In the background, the LWC time series of every sampling site is 

plotted one by one as grey lines. This visualisation enables the investigation of the spatial variability across 

all monitored sampling sites over time.  



 

Figure 12 Temporal evolution of leaf water content at each block. Block mean and standard deviation is represented by the 
coloured bold lines and shaded areas, respectively. On each subplot, grey lines mark the LWC timeseries at each sampling point. 

Figure 12 also reveals position of mean LWC levels of a particular block positioned relative to the entire 

range observed over the monitored blocks. Block 40 planted with HW cultivar occupied the lowest levels 

of LWC due to the non-irrigation. Even though Block 12 was irrigated Blocks 31 and 109 showed elevated 

level of LWC whereas Blocks 33 and 77 were situated around the middle range. The temporal change of 

standard deviation indicates that the variability within each block was dynamic during the growing season. 

SAR and LWC relationship 
To understand the basic relationships, distributions, and patterns hiding in this dataset, LWC 

measurements were related to VV, VH as well as the two derived indices in pair plots. Similar patterns 

were given by plotting point-scale, zonal scale, and block-scale data points. Figure 13 was generated at 

the zonal scale to visualise a larger number of data points as opposed to the number of data points at the 

block-scale. The observations were coloured by cultivars. 

The previously described different LWC holding characteristics of HW, and GA cultivars resulted in 

observable differences in VV and VH backscatter response and inherently in the behaviour of the derived 

SAR indices, i.e., CR and RVI. The backscatter values from HW foliage were generally lower than in GA 

blocks for all SAR derived variables. 



 

Figure 13 Pair plots to reveal the relationships between leaf water content and SAR derived data at the zonal scale. 

These differences resulted in a formation of two distinguishable clusters shown by the kernel density 

estimate plots in the upper triangle of Figure 13. These observed stratification patterns confirm the 

previously introduced fundamental relationship between the dielectric properties of the target and the 

SAR backscatter. This means, that as the water content of the foliage increases, the intensity of the 

microwave signal also increases resulting in greater backscatter values for well hydrated foliage. The 

apparent correlation between LWC and SAR backscatter implies that response follows a certain level of 

embedded positive linearity which could be exploited during modelling. 



Modelling LWC from SAR 
The modelling was considered as a multivariate regression problem. Due to the low number of 

independent variables and observations, a simple multivariate linear regression approach was chosen to 

fit a model and predict LWC. Several other more sophisticated and complex algorithms, such as decision 

trees and partial least square regression, were tested but their performance did not show significant 

accuracy improvements as compared to a multivariant linear approach. Some of the tested methods can 

suffer from over fitting and the interpretation of the model performance can be challenging when the 

number of observations is low. Therefore, it was found that a simple linear and common type of predictive 

analysis tool was adequate to prove the concept presented in this report.  

The prediction results were validated against the ground truth using two common methods, i.e., repeated 

K-fold cross-validation (3 repeats and 10 random folds) and Leave-One-Out (LOO) cross-validation. There 

was no observation removed from the dataset during the analysis and fitting. To evaluate the regression 

model, root mean squared error (RMSE) and mean absolute error (MAE) were calculated to quantify the 

residuals. The coefficient of determination score (R2) was chosen to represent the goodness of fit between 

observed and the predicted values and it also indicates the amount of variation explained by the model.  

Sentinel-1 predictions 
To develop analytical models and predict LWC, a total of seven variables were generated. Two SAR 

variables were chosen, namely VV (1) and VH (2) as the two polarisations. As the SAR indices were poorly 

correlated with LWC, they were not included in the model development.  

Soil moisture, soil water deficit and precipitation data were fed into the model in specific formats to 

investigate their effect on model performance. As a group, these variables will be referred to as 

hydrological variables in this study. The Mean soil moisture (3) variable was calculated by averaging the 

soil moisture readings at 300 mm and 600 mm depths. The precipitation data was summed for each 8-day 

period prior to sampling events, providing the 8-day cumulative rainfall (4) variable as model input. Finally, 

Soil water deficit (5) derived from Tauranga Airport weather station was added. The models were 

developed with and without rainfall and soil water variables included. 

The model was provided with Variety (6) information and Week number since 1 Oct (7) as numeric 

features. Since the SAR signal is affected by biomass, the Week number since 1 Oct variable was created 

to support the model to account for the temporal component of the canopy development cycle.  

While this approach is not intended as a final solution, the addition of Week number since 1 Oct 

significantly improved the model performance. Several alternative ways can be investigated to account 

for biomass changes, including the implementation of growth models, ingestion of additional weather 

information, the use of optical remote sensing imagery or the development of biomass indicators using a 

data fusion approach. 

In case of Sentinel-1 predictions, the highest model performance and lowest RMSE was achieved at the 
block-scale with soil moisture and rainfall information included. This model resulted in a mean R2 of 0.77 
and an RMSE of 0.99 % as the outcome of K-fold cross validation. The LOO cross-validation resulted in R2 
of 0.85 and a 1.04 % RMSE. Table 2 and  

Table 3 summarise the model performance measures for the two satellites with and without the use of 

rainfall and soil moisture variables. Both Sentinel-1 zonal scale and point-scale data extraction methods 

delivered R2 values of 0.65 and RMSE of 1.5%. 



Overall, the model performance comparison revealed that a multivariate linear regression captured a 

large amount of the variation in the dataset regardless of the data extraction and aggregation method.  

However, these results indicate that slightly higher predictive accuracy and model performance can be 

achieved at the block-scale compared to a zonal-scale or point-scale approach. Due to the lowest 

uncertainty, reduced error rates and highest R2 achieved by the modelling at the block-scale, only that 

method will be detailed in this section. Figure 14 presents the linear relationship between observed and 

predicted LWC values derived from the LOO cross-validation at the block-scale. For comparison, 

histograms and density curves were generated to reveal the shape and distribution of the observed and 

predicted block mean LWC values. The density curves showed a generally close alignment between 

observed and predicted values considering their shapes and value ranges. Minor differences can be 

observed at 75% and 80% LWC values which indicate slight overestimation and underestimation, 

respectively.  

  
Figure 14 Model performance and histogram comparisons of observed and Sentinel-1 predicted LWC values at the block-scale 

ICEYE predictions 
Considering the higher spatial resolution of ICEYE images compared to Sentinel-1, and the resulting low 

number of observations n=18 at the block-scale, the modelling was completed at the zonal scale with 

n=54 observations. ICEYE imaging radars operate only in VV polarisation mode, therefore the number of 

input variables were reduced to six, i.e., VV (1), Variety (2) and Week number since 1 Oct (3), Mean soil 

moisture (5), 8-day cumulative rainfall (5), and Soil water deficit (6) for this task.   

the relationship between observed and predicted values as a result of LOO cross-validation is presented 

in Figure 15. The validation results are provided in Table 2 and Table 3 whereas a visual comparison of 

correlation and error metrics grouped by validation method, metric and satellite were plotted in Figure 

16. The scale and whether hydrological variables were included in the analysis is specified on the x-axis.  

The previously introduced multivariate linear approach delivered 0.64 R2 and 1.37 % RMSE as a result of 

LOO cross validation with the hydrological variables included. The correlation coefficient and error metrics 

obtained from K-fold cross validation were slightly lower than the Sentinel-1 prediction results at the zonal 



scale, giving 0.59 R2 and 1.4 % RMSE without the addition of hydrological variables. The standard deviation 

of RMSE and MAE calculated though K-fold cross validation were greater as compared to the results 

delivered by Sentinel-1 based predictions.  

Several factors may be responsible for the declined model performance compared to the modelling results 

from Sentinel-1 images. These potential reasons may be the low number of data points, the aggregation 

at the zonal scale, the single polarisation of ICEYE sensors. Another plausible factor is the narrow range of 

LWC values used to train the models. This issue originates from the three ICEYE image acquisitions starting 

from the end of February. Consequently, these images were captured across the lower end of the LWC 

value range missing the well-hydrated status of the foliage that occurred in the early stage of the season.  

 

Figure 15 Model performance and histogram comparisons of observed and ICEYE predicted LWC values at the zonal scale 

Despite the above-described limitations, and the low number of input variables, the modelling results 

indicate that ICEYE images are likely to serve as an alternative to Sentinel-1 in the context of foliar water 

content mapping. Aggregation at the block-scale could further improve the prediction accuracy, although 

that would require a larger collection of data points than the currently available dataset.  

Table 2 Summary of modelling results for Sentinel-1 and ICEYE datasets. The values in brackets indicate standard deviation 
generated from repeated K-fold cross validation. LOO – Leave-One-Out  

Cross-validation Metric 
Sentinel-1 ICEYE 

Block-scale Zonal scale Point-scale Zonal scale 

K-Fold 

R2 0.74 (0.17) 0.65 (0.16) 0.66 (0.15) 0.59 (0.2) 

RMSE (%) 1.07 (0.32) 1.54 (0.21) 1.53 (0.22) 1.4 (0.47) 

MAE (%) 0.91 (0.29) 1.26 (0.18) 1.25 (0.19) 1.22 (0.41) 

LOO 

R2 0.83 0.72 0.72 0.54 

RMSE (%) 1.11 1.54 1.54 1.54 

MAE (%) 0.9 1.25 1.24 1.26 

 



Table 3 Summary of modelling results for Sentinel-1 and ICEYE datasets including hydrological variables. The values in brackets 
indicate standard deviation generated from repeated K-fold cross validation. LOO – Leave-One-Out 

Cross-validation Metric 
Sentinel-1 ICEYE 

Block-scale Zonal scale Point-scale Zonal scale 

K-fold 

R2 0.77 (0.2) 0.67 (0.17) 0.67 (0.16) 0.59 (0.27) 

RMSE (%) 0.99 (0.35) 1.49 (0.21) 1.48 (0.2) 1.22 (0.43)  

MAE (%) 0.83 (0.29) 1.21 (0.17) 1.2 (0.17) 1.05 (0.38) 

LOO 

R2 0.85 0.74 0.74 0.64 

RMSE (%) 1.04 1.49 1.49 1.37 

MAE (%) 0.81 1.19 1.19 1.1 

Concerning these reasons, only the Sentinel-1 datasets were used to model LWC changes over time which 

will be discussed in the following section.   

 
Figure 16 Plot of correlation and accuracy metrics as a results of multivariate linear regression approach. Error bars indicate 
standard deviation generated from repeated K-fold cross validation.  



Timeseries of LWC predictions from Sentinel-1 data 
The trained model was executed on each Sentinel-1 image captured between November 2021-April 2022 

to generate time series dataset for each monitored block to assess whether the modelled LWC followed 

the trends returned by the lab analysis (Figure 17). In total, 14 Sentinel-1A SAR images were used in this 

analysis. The continuous lines coloured by variety show the evolution of predicted block mean LWC. The 

ground truth is represented by the black markers indicating the mean as points and standard deviation as 

error bars calculated from the lab results at the three sampling sites in each block. 

It can be observed that the long-term decreasing trend was followed by the predictions in each block. In 

general, the predictions errors were the largest in Block 31 and 77. Interestingly, the model predictions 

persistently overestimated the observed LWC values in Block 77, which is covered by hail netting.  

The different ranges of LWC between HW and GA varieties were captured well by the model and most 

predicted values were found within the error bars, i.e., within the standard deviation of LWC within a 

specific block. The modelled values were mostly in close agreement with the lab results and followed the 

trends between November and March. However, in March the predictions often showed under-or over 

estimation. There could be several reasons and factors affecting the predictions in different stages of the 

growing season. Increasing biomass, the crop load, the developing thickness of the foliage layer, irrigation 

can all contribute to the SAR response.  

 

Figure 17 LWC predictions over time at the six monitored blocks. Continues coloured lines indicate the predicted block mean LWC 
and the black markers indicate the ground truth with standard deviation as error bars.   



Overall, the model performance can be considered reasonably high for all time stamps with ground truth 

data. These results suggest that a simple linear model was able to predict LWC over time with acceptable 

accuracy.   

To generate LWC maps, several geospatial tools were used including GIS-assisted techniques and open-

source geospatial Python packages. The orchard blocks were represented by georeferenced polygons 

which were used for data extraction and aggregation. Geospatial zonal statistics was applied to extract 

block-scale mean SAR data from each available Sentinel-1 image for all blocks presented in Figure 2. The 

SAR dataset was populated with variety information and the corresponding LWC results for modelling. To 

create a vector-based visualisation, the centroid of each block was created. The modelled LWC values 

from each Sentinel-1 image were assigned to the centroids generating an attribute table with time stamps. 

To provide a visually meaningful spatial modelling output the modelled LWC values were represented by 

vertically extruded cylinders and presented as a static 3D view. A series of 3D scenes were generated for 

each variety separately, as shown in Figure 18.  

This allows the tracking of LWC changes in each block over time and to get insights about the spatial 

variability within Matapihi orchards. However, due to the numerous timestamps considered in this 

analysis, the modelled results were fed into an online dashboard for interactive mapping which process 

will be described in the following section. 

Interactive dashboard development  
The modelling was completed for 100 selected blocks with known variety as presented in Figure 2. Once 

all maps were produced, the outputs were uploaded to the hosting servers of ArcGIS Online. In the next 

step an operational ESRI ArcGIS Dashboard was developed to create an interactive visualisation interface 

to explore the spatial and temporal trends.  

Dashboards enables users to visualise and aggregate information from various sources via an intuitive 

interface. Geospatial dashboards often centralised around a web-map that displays GIS layers which can 

be used as input for plots placed around the map widget. The purpose of this dashboard is to provide 

access to complex data sets and to provide benefits over static map content. This is essential for 

generating actionable information from highly dynamic environmental variables, such as LWC. Moreover, 

the cloud-based platform offers a scalable solution, it can be updated with new predictions from SAR and 

the spatial region of interest is extendable.  

A screenshot of the dashboard is presented in Figure 19. The dashboard comprises of widgets, or elements 

which allow cross-filtering of a dataset by variety, orchard block identifier, or date. The dashboard 

features a map in the centre displaying the generated geospatial layers. The map is the core element of 

this dashboard, and the map layers are interlinked with all the other widgets for real time interaction.  

In the left, category selectors assist with filtering the dataset based on calendar day or variety. Right beside 

the selector panel, a ranked bar chart provides variety specific insights about which blocks are the most 

hydrated or show the lowest LWC levels on a selected date.  

 



 

Figure 18 A series of spatial maps of block-scale LWC levels at Matapihi 



 

Figure 19 A snippet from the developed ESRI ArcGIS Operational Dashboard for LWC monitoring 

Below the map element, two gauges display the LWC values for selected blocks which can be done by 

clicking on a block on the map. For the sake of this demonstration, arbitrary low, optimal and high LWC 

thresholds were added to the gauges which could facilitate easier interpretation for the users. These 

thresholds could indicate whether a block is over- or under-irrigated or the blocks are at the optimum 

LWC level. To track changes over time, a timeseries plot situated in the bottom right visualises LWC values 

on all available dates for a selected block. For LWC time series comparison purposes, multiple blocks can 

also be selected and displayed on this plot.  

In the top right a map legend is given informed by the underlying spatial layers. As the result of the current 

filter settings the map widget displays the block-scale values derived from the Sentinel-1 LWC prediction 

on the 15 November 2021. Up and down arrows and a chosen red-blue colour scheme illustrates whether 

the blocks’ LWC levels are above or below the given thresholds. For demonstration purposes, an arbitrary 

value of 76 and 73 % were chosen for HW and GA cultivars, respectively.  

The chosen LWC thresholds will need to be determined precisely with further research that considers the 

relationship between foliar water content dynamics, yield, fruit development and where the stress point 

is for both varieties.  

As a further improvement, point-scale soil moisture information from IoT devices or climatic variables can 

also be incorporated into the dashboard and visualised real-time to inform water management decisions. 

The combination of GIS and an interactive operational dashboard allows growers to turn complex, large 

datasets into insights. By adopting these visual analytics toolkits, the end users can extract actionable 

information and relate that to a specific location. A geospatial dashboard provides a useful platform for 

growers for the identification of potentially water stressed areas and for the tracking of LWC changes and 

it can help to optimise water usage.   



Communication, written articles, and press releases 
Several channels have been used to engage with the members and the wider community to enhance the 

value of the generated knowledge, to share project updates and to introduce the idea of a combined 

technology driven solution for optimising irrigation. These updates included a newsletter, a science 

conference presentation, internal and external meetings, a magazine article, and a downloadable case 

study. Here we provide a timeline detailing these updates.  

21 September 2021  
 

PlantTech newsletter “On the Vine” announcing the proposal success, members, and general description 
of the project.   
 

“ “ “  

Rural Professionals Fund  
PlantTech has submitted a funding bid to the Rural Professionals Fund run by Our Land and 
Water. The aim is to stimulate collaboration between research organisations and rural 
professionals.  
“The rural professional in this context is a company called RICADO, based in Te Puke. They 
provide a range of IoT monitoring solutions for orchards such as weather stations and soil 
moisture sensors,” says lead researcher Istvan Hajdu.   
RICADO and PlantTech are working with iwi organisation Ngai Tukairangi, the biggest Māori-
owned producer of kiwifruit in New Zealand. The objective is to look at the use and management 
of water. One of the solutions that RICADO offers is soil moisture sensors.  
Istvan explains that there are satellite systems that can give growers information about moisture 
on the ground. They’re different from satellite imagery systems because these systems use 
radar.  
“They are sending out a signal and looking at what bounces back. These systems don’t need the 
sun so they can work both day and night.”  
Istvan says the signal will go through clouds, so it doesn’t matter if it’s clear or cloudy.  
“The upshot of that is you know you are getting a satellite image when it comes over. The data 
comes through every seven to 10 days,” says Istvan.  
This project is looking at how PlantTech can combine IoT soil sensors, that give very detailed 
information about one point, with satellite data that gives the user a comprehensive picture 
every week. The objective of that is to create tools that RICADO can make available for their 
customers to allow them to be more efficient with the use of water.  
“This project all comes back to managing our water resources efficiently and effectively, ensuring 
that we can continue to produce the highest quality delicious fruit whilst preserving the quality 
of New Zealand’s precious environment,” says Mark.  
“ “ “  

10 February 2022  
 

Presentation at the eResearch NZ 2022 conference  
 

The event was co-hosted by New Zealand eScience Infrastructure (NeSI), REANNZ, and Genomics 
Aotearoa, and delivered in partnership with Te Whare Wānanga o Waitaha University of Canterbury (UC). 
The Rural Professionals framework and the strategy of Our Land and Water resonated well with the theme 
of this conference, Building Capability Together / Waihanga Āheitanga Kotahitanga.  The 20 min oral 



presentation was given within the Āheitanga / Capability session, highlighting the collaboration between 
project members and how this project can help to manage our water resources better.  The first slide of 
the presented talk and the accepted abstract is presented below. 
 

 
 

“ “ “  
Aotearoa New Zealand’s kiwifruit sector contributed 38%, by far the highest value to horticultural 
exports in 2020. The current outlook sees global trade volumes continuing to rise by 45% by 2025 
and by 2030, the sector’s GDP contribution will double. As a response, a further 2800 hectare is 
being licensed to kiwifruit production in the next few years. However, water access has been 
identified as one of the main risk factors that investors will face. Furthermore, growers are already 
progressively required to justify their water take through rigorous reporting depending on the use 
of surface water, ground water or community water schemes. 
 
Therefore, managing water resources sustainably is crucial to New Zealand’s horticultural sector. 
We know we must manage these resources by optimising the use of rainfall and applied water to 
avoid water stress in crops. Irrigators are being required to monitor their use of water and many 
now use soil moisture measurement (through probes in the ground) as a means of better informing 
their irrigation management. While this is a major step forward and accurate information can be 
provided for the point measured, it is also recognised that orchard soils are often highly variable 
and further methods need to be implemented to create a cost-effective measurement network. 
 
This project uses Synthetic Aperture Radar (SAR) which is a form of microwave sensing to provide 
a series of spatial maps of canopy water status to monitor water stress. The first crop it will be 
used in is kiwifruit. Microwave remote sensing technology can offer a viable method of capturing 
plant stress variability over individual orchards and blocks, with a high level of granularity and 
regularity. This granular information can be readily integrated with the accurate point source data 
from soil moisture probes to create a very effective measurement network. Microwave satellites 
orbit over New Zealand on a very regular basis providing a number of advantages over 
conventional optical means, it is not affected by cloud cover, and it captures images day or night. 



This removes some of the major limitations of optical satellite systems and provides a means of 
having highly regular and reliable measurement. 
 
The outcomes of this project feed into the development of digital tools for growers utilising this 
technology that will enable them to make better decisions around increasing their harvestable 
yield and reducing fruit value variability within the orchard. This project is being run with the 
cooperation of the industry, including growers and technology providers. Since SAR imagery is 
available nationwide, the developed tools will ultimately help the wider grower community and 
assist with precision irrigation strategies that can be applied to eliminate both under and over-
irrigation.  
“ “ “  

 
May 2022 
 
Press release in “The Orchardist” magazine. The article was reviewed and permitted by Our Land and 
Water. Screenshots of the article are attached below.  
 

 
 

 

  



28 July 2022 
 
A case study was published on PlantTech Research Institute’s website to share the project outline and the 
main findings with the general public from a business challenge, technology challenge and project value 
perspective. Screenshots of the case study are attached below; which can also be accessed following this 
URL:https://www.planttechresearch.com/case-studies/2022/7/27/kiwifruit-leaf-water-content-
mapping-using-microwave-remote-sensing. 
 

    

https://www.planttechresearch.com/case-studies/2022/7/27/kiwifruit-leaf-water-content-mapping-using-microwave-remote-sensing
https://www.planttechresearch.com/case-studies/2022/7/27/kiwifruit-leaf-water-content-mapping-using-microwave-remote-sensing
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