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The production of dairy, meat, and fiber by ruminant animals relies on the biological

processes occurring in soils, forage plants, and the animals’ rumens. Each of these

components has an associated microbiome, and these have traditionally been viewed

as distinct ecosystems. However, these microbiomes operate under similar ecological

principles and are connected via water, energy flows, and the carbon and nitrogen

nutrient cycles. Here, we summarize the microbiome research that has been done in

each of these three environments (soils, forage plants, animals’ rumen) and investigate

what additional benefitsmay be possible through understanding the interactions between

the various microbiomes. The challenge for future research is to enhance microbiome

function by appropriate matching of plant and animal genotypes with the environment to

improve the output and environmental sustainability of pastoral agriculture.
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INTRODUCTION

The arrival of the next generation sequencing (NGS) era has opened up new opportunities for
understanding biological processes and implementing new strategies for improving these processes
and monitoring the environmental impacts of agriculture (1–7). This has enabled the development
of tools to implement genomic selection (GS) particularly in the livestock industry, and provide
genome wide association studies (GWAS) to further elucidate genomic regions of importance
in production traits. Genome assemblies, together with re-sequencing, have helped to establish
SNP arrays for assessing genetic variation within and between genomes of individuals. This
has become well-established for diverse breeds and species from around the globe in animal
[e.g., (8–13)], and plant species [e.g., (14–18)]. In addition, genomic selection methods (19–29)
used in conjunction with imputation strategies (30–33) that utilize various SNP densities in a
cost effective manner, encourage the uptake of GEBVs by the breeding industry with the view
to increase the rate of genetic gain in both animals (22) and forage plants (34). Furthermore,
utilization of genotypes that are imputed to a whole genome sequence equivalent level for use
in GWAS and GS are now a reality (35–39). Continued reductions in DNA sequencing costs
together with an improvement in longer read technology has generated more refined genome
assemblies that are being annotated at the functional level via assays designed to establish chromatin
architecture, accessibility, modification and subsequent transcription and translation profiles (40–
45). The human and mouse ENCODE projects (46–49) have paved the way for the international
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consortium FAANG [Functional Annotation of the Animal
Genome; (50, 51)], which aims to identify all the functional
elements in animal genomes. A significant challenge in the post-
genomic era is connecting genotype to quantitative phenotype
in basic and applied biology, represented as the genome to
phenome challenge. Understanding the genotype to phenotype
link is not only important from a genomic selection perspective
but also assists in improving the fundamental understanding of
the biology of the system.

The use of genomic tools in livestock research has had
a substantial effect on genetic gain for the industry (22).
Similar technologies are now being developed and implemented
in forage species (34, 52). However, the animal and plant
genomes constitute only two components of the “pasture to plate
ecosystem.” They exist and function in association with their
own microbiomes, and the microbiome of the soil on which
pastures are grown and animals graze. The Human Microbiome
Project has lead the way in characterizing the contributions that
microbiomes make to host phenotypes, with an ever-increasing
list of human attributes which are influenced by microbial
activities [e.g., (53–69)]. Subsequently, NGS technology has
advanced research in the characterization and understanding
of the microbiome of the rumen of grazing animals (70), as
well as the microbiome of forage plants and soils. Microbiome
characterization initially involved sequencing of marker genes
within microbial communities mainly targeting rRNA gene
sequences but has grown to include deep metagenomic
and metatranscriptomic sequencing. This has allowed global
characterization of both culturable and unculturable microbial
species within an environment coupled with quantification of
their gene expression which enables functional profiling. In
addition to understanding the contribution microbiomes make
to production in grazing animals, genomic techniques can also be
extended to monitoring sources of food or water contamination,
thereby having important potential impacts for human health.

The integration of genomic information from host organisms
with their microbiomes and with other environmental
parameters of the target ecosystem has become an important
challenge to research projects seeking to enhance agricultural
output while reducing its environmental footprint. These host
× microbiome × environment relationships in agricultural
production systems involve extremely broad and complex
interactions along the soil-plant and animal continuum, and its
investigation needs to be divided into more specific research
questions to enable detailed dissection and analysis. In this
context, an “ecological genomics” approach is appropriate,
whereby the microbiomes associated with soil, plants and
animals are recognized as an integral part of an interconnected
system that influence the functions of their hosts and thereby
contribute significantly to productive processes in the pastoral
sector (71). The key features of, and interactions between the
soil-plant-animal microbiomes need to be identified so that their
contributions to these agricultural processes and their impacts
on the environment can be quantified.

In this paper, we consider the recent developments in
genomics that provide new tools to understand the microbiome
along the soil-plant-animal continuum within the pastoral

production system. We summarize how these tools provide
more precision in the identification and quantification of the
structure of the microbial communities and how the emerging
tools in metagenomics can be applied. Within the soil-plant-
animal continuum we look at the animal and farm management
opportunities arising from advanced understanding of microbial
diversity and ecosystem function and how that can be used to
improve soil processes, forage growth and pasture utilization and
help withstand the challenges of diseases and climate change.
These opportunities are summarized via three case studies
involving: the microbiomes of the soil, the pasture, and the
rumen of grazing animals. The potential for interdependencies,
interplay and interactions between the microbiomes of the
ecosystems along this continuum are considered along with other
downstream impacts on ecosystems associated with water runoff.
We finally propose how an “ecological genomics” approach can
contribute to improved understanding of these microbiomes to
improve the performance of the pastoral sector.

CASE STUDY 1: SOIL MICROBIOME

The biology of soils has long been recognized as being central
to the productive capacity of natural and managed ecosystems
(72, 73). While we cannot directly observe much of the soil
microbiome, its function shapes the world around us. Soils
microbiomes are highly diverse ecosystems, comprising complex
assemblages of bacteria, archaea, and eukaryotic taxa, and are
considered the most genetically diverse ecosystems on earth
(74). Estimates of the total of life in soil vary widely; bacterial
species alone, are present in the order of thousands to tens-of-
thousands of species (inferred from 16S rRNA gene phylotypes)
per gram of agricultural soil (74–76). Soils provide a reservoir of
microbial species that may either support or inhibit the growth
of plants and animals directly; as beneficial symbionts or as
pathogens, respectively, or indirectly via actions which affect the
biological availability of nutrients and toxins (77). Furthermore,
functions supported by the soil microbiome provide a range
of enabling and provisioning ecosystem services that support
the natural environment, including interaction between above-
and below-ground terrestrial biomes, aquatic ecosystems (rivers,
lakes, groundwater), and the earth’s atmosphere [e.g., (78)].

New soil management approaches are aimed at opportunities
based on the understanding of soil microbiomes for improved
processes and lowered environmental impact (79, 80). These
management strategies increasingly use ecological genomics
approaches (81) where soil is treated as an ecosystem hosting
a rich diversity of species which harbor diverse “functional”
genetic elements (e.g., genes conferring antibiotic resistance
or nitrogen fixation). Assessing these at an ecosystem level is
technologically challenging and requires the development of new
bioinformatic and statistical tools for ecological analysis [e.g.,
(82, 83)]. Most importantly, an ecological genomics approach
necessitates a shift in conceptual thinking from the organism
or gene using ecosystem property/function interactions, to
embracing the complexity of interactions among organisms, their
genetic elements, and the biotic and abiotic factors that are
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expressed collectively to deliver ecosystem processes (84, 85).
Ecological genomics offers a key opportunity to further advance
the understanding of soil ecology and function and thereby help
unravel the complexity of their ecosystems across spatial and
temporal scales (86–88).

The application of molecular-based tools has become essential
to characterize and understand soil ecosystems, because the soil
is hyper-diverse and therefore genetically complex. A single gram
of soil is estimated to contain up to 1,000 Gbp of metagenome
DNA (80, 89) and current NGS platforms can only provide partial
coverage of themetagenomic DNA in a soil sample. To date, most
soil metagenome research has relied on the characterization of
specific elements within the metagenome. Examples include the
use of meta-barcoded primers to assess community composition
[e.g., (90)], application of NGS or high-density environmental
microarrays to determine functional status/composition of the
community [e.g., (91, 92)], or functional screening of libraries
of cloned DNA fragments for novel enzymes and bioactive
compounds (93).

A good example illustrating metagenomics applications to
study the soil microbiome involves soils suppressive to soil-
borne plant diseases. These are defined as those in which the
activity of the resident soil microbiota reduces the occurrence
or severity of plant disease caused by soil-borne pathogens
(94). Examples of such disease reduction in soils include
suppression in wheat of take-all (Gaeumannomyces graminis
var. tritici) and Rhizoctonia bare patch (Rhizoctonia solani
AG-8) diseases, and the role Streptomyces spp. in the plant
rhizosphere and endosphere play in promoting plant growth
and the induction of resistance via antibiotic production and
competitive exclusion (95). Given the high cost of soil-borne
disease on agricultural production [e.g., estimated costs of 28–
50% of pasture production in New Zealand; (96, 97)] and the lack
of practicable and economic control options, the development of
disease suppression in soil microbial communities represents an
important soil service that serves to maintain agricultural activity
and the food and fiber it produces (86). Disease suppression
has been observed in a number of soils, with different disease-
host interactions, and can develop naturally over time (94,
98). In instances where disease suppression develops, it is
underpinned by alteration in the soil microbial community
structure toward a greater number of disease suppressive taxa, or
expression of potential (latent) disease suppressive activity (86,
99). Not surprisingly, the development of disease suppression
in soils is highly desirable, and there have been considerable
efforts to understand how this can be facilitated through
changes in system management [e.g., via fertilizer use and plant
residue management; or via reduced tillage and crop rotation;
(94, 100)]. However, the characterization of the community
and functions associated with general disease suppression has
been very difficult, particularly as they potentially represent a
small fraction of the total microbial diversity in soils (101).
Furthermore, in the case of “general” disease suppression (102)
underpinned by phylogenetically diverse consortia of microbiota,
functions such as lytic enzyme production, antibiotic secretion,
and elicitation of plant defense mechanisms, may be collectively
responsible (94).

Advances in understanding changes within the soil
community during development of disease suppression are
being supported through application of ecosystem genomic tools
[see Dignam et al. (86) review]. These include the application
of high density oligonucleotide microarrays (88), tag-based
NGS (103), and shotgun metagenomics (104, 105). In each case,
phylogenetically diverse microbial consortia were associated
with disease suppression. Resolving these taxa against the rich
background of soil microbial diversity would not have been
possible without an ecological genomics approach.

More recently, the focus on assessment of soil-borne disease
suppression has been extended from approaches focused on
identifying the taxa responsible, toward assessing soil ecosystems
based on functional genes. This has followed recognition that, in
many instances, a phylogenetic description of a microorganism
can be a poor reflection of the metabolic (functional) ability
outside of its base metabolism. This is particularly important
where functions, such as antibiotic production, antibiotic
resistance, host compatibility, and virulence, are borne on
mobile/transferrable genetic elements such as plasmids (106).
The acquisition or loss of a plasmid can change the biology
and wider ecology of individuals of the same species in the soil.
In these cases, the identification of a species only indicates the
presence of a “potential host” that may or may not harbor the
functional genes of interest [e.g., (107)]. As such, the detection
of multiple functional genes associated with disease suppression
is likely to provide a richer understanding of the ecosystem
potential for this important ecosystem function (108). To achieve
this, technology platforms such as functional environmental
microarrays (91) are being constantly updated to include
information on genes either directly or putatively associated with
disease suppression. These include many antibiotic production
genes, such as phzF and phzA (phenazine), bacA (bacilysin),
pabA (chloramphenicol), phlD (DAPG), lgrD (gramicidin),
lmbA, (lincomycin), prnD (pyrolnitrin), strR (streptomycin),
spaR (subtilin), and pcbC (β-lactam) genes, alongside sub-sets of
existing gene probes for detection of lytic enzyme production,
e.g., hcnB (cyanide formation) (109). By assessing the abundance
and distribution of these genes in soil environmental DNA
(eDNA) samples, the functional ecology of disease suppressive
communities may be determined. Impacts of farm management
practices on disease suppression can then be interpreted through
the lens of functional changes in the soil biology. Over time, this
knowledge is expected to provide novel opportunities for on-
farm management of soil biological resources toward enhanced
disease suppression. Furthermore, molecular-based tools may
enable the rapid identification of soils suppressive to specific
diseases. These soils will represent important natural resources
enabling the transmission of disease suppression from one soil to
another by deliberate soil inoculation (94).

Functional properties of the soil microbial ecosystem are
being inferred based on the taxa present. Using phylogenetic
marker gene information (e.g., 16S rRNA or ITS gene sequences),
bioinformatic tools such as PICRUSt [Phylogenetic Investigation
of Communities by Reconstruction of Unobserved States;
(110)] and FUNGuild (111) can predict the metagenome level
functional content (e.g., C and N cycling genes) or functional
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guilds (pathogens, saprotrophs, symbionts, etc.) to provide
deeper ecological insights into the functional ecology of the data
sets. The expansion of these and similar tools, alongside better
reference data (annotated genomes) which these tools reference,
will provide further cost-effective approaches to describe the
ecology and functioning of complex ecosystems such as soils.

The transfer of microbial species from one soil to another can
confer new ecosystem phenotypes. This has been well-established
for various microbial species such as mycorrhizal fungi, plant
pathogens, and rhizobia. The movement of these taxa among
soils has direct impact on the productive capacity and success
of various plant species in the receiving environment (112, 113).
This demonstrates the potential to manage soil biology for
specific production-based and/or environmental outcomes.

Soil biology is the “engine room” that recycles plant material,
either from direct inputs (leaf fall, root senescence), or secondary
deposition (animal manure, urine) (114). The nutrients in these
materials are either recycled within the biosphere, or mineralized
into the geochemical matrix of the soil (114). In terrestrial
systems, the soil microbiology provides an interface between the
biological and abiotic worlds, affecting movement of essential
major and minor elements between the geologic reserves and
the biosphere. As such, there are a broad range of opportunities
to harness the potential of soil ecosystems to optimize nutrient
cycling. These include increasing the supply of many major
and minor essential elements for plant use, stimulating the
long-term storage of carbon in soils and promoting “closed”
nutrient cycling within specific environments such that N within
NO3 and N2O, for example, stay on-farm. Given our current
lack of understanding of soil biology, we still have only a
rudimentary knowledge of the extent of species interactions
that may potentially affect critical rate regulating biogeochemical
transformations in the mineralization, immobilization, and
cycling of nutrients and the coupling of nutrient cycles. Indeed,
it is highly likely that cryptic species and/or functional processes
will have hitherto unrecognized importance in many aspects of
soil nutrient cycling.

CASE STUDY 2: PASTURE MICROBIOME

Grassland composition and forage production is finely balanced
under the influence of interactions among many factors (115).
These include the physical environment of soil, water, nutrient
availability, temperature, extreme climatic events [e.g., (116)],
pasture management of the grazing process (117), plant genetics
(118), and the soil and plant microbiomes (see case study 1,
above). Pasture-based livestock industries are primarily based on
relatively simple mixtures of temperate grass and legume species
as the main feed source for ruminant animals. Yet even these
“simple” vegetation communities vary greatly in space and time
(119), often for reasons that are not obvious using traditional
scientific monitoring or analytical methods.

Well-studied components of the microbiome in grass-
legume pastures involve the symbiotic association of Epichloë
endophytes in grasses and Rhizobium nodules on legume roots.
We illustrate ecological interactions involving these critically

important microbiome components with an example based upon
pasture dynamics under dairy cattle grazing in a warm-temperate
region of New Zealand.

New knowledge of the ecology of pasture communities in
northern New Zealand has revealed a clear instance where
the microbiome drives change in community structure,
with consequent feedback loops that engage other microbial
communities. Sustained high densities of the root-feeding insect
pest black beetle (Heteronychus arator) since 2007/08 in the
Waikato and Bay of Plenty regions of New Zealand (120),
combined with other stress factors, particularly increasing
summer-autumn soil moisture deficit (121), has led to
widespread but spatially disaggregated instances of near-
complete failure of pastures based on perennial ryegrass (Lolium
perenne). For example, when a ryegrass population contains
a strain of the endophyte Epichloë festucae var. lolii [formerly
Neotyphodium lolii (122)] that offers minimal protection against
the insect pest black beetle, pasture collapse is observed within
2 years after sowing (123). In contrast, when the ryegrass
population contains an Epichloë endophyte strain effective
against black beetle, ryegrass populations are maintained (124).

A signature of ryegrass failure is the content of white clover
(Trifolium repens) in the pasture. When white clover is sown
together with ryegrass cultivars containing the endophyte strain
AR1 (which does not protect against black beetle), the white
clover content of the pasture increases rapidly. In contrast, in
pastures sown with perennial ryegrass containing endophytes
that are effective against black beetle such as wildtype endophyte
or strain AR37 (125) the ryegrass/clover balance is stable. The
plant genome does not explain this different survival pattern,
although there can be subtle host genotype x endophyte strain
interactions that mediate the speed and scale of change (126).
The outcome of clover dominance, resulting from reduced
competitive pressure from the grass (127) leads to Rhizobium
symbiosis becoming a dominant process in the community.
This illustrates the connectivity between the plant and soil
microbiomes—mediated through ecological processes, in this
case competition. Furthermore, clover dominance changes the
nutritional composition of the feed eaten by livestock, reducing
total fiber content and increasing soluble protein (128), which
in turn creates a change in the rumen microbiome where
the microbial composition changes in response to the altered
substrate. This change results in a further interaction involving
the microbiome impacting on the host animal. A direct outcome
of this interaction is greater ammonia release in the rumen,
flowing through to increased excretion of surplus nitrogen via
higher urinary nitrogen concentrations (129) and heightened risk
of nitrate leaching from beneath the urine patches returned to the
grazed pasture (130).

This example illustrates the influence of, and in some
case control by, the microbiome on the productivity and
sustainability of a pastoral ecosystem. It highlights feedback
loops, precipitated by amis-match between the plantmicrobiome
and the environment, led to the transformation of a grass-
dominant and relatively nitrogen-efficient pasture to a legume
dominant pasture with a leaky nitrogen cycle. The new pasture
state with strong clover content may increase total herbage
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accumulation (compared with a ryegrass-dominant sward) in the
short term. However, if clover contribution remains in the range
of 15–30% of herbage mass (131), the consequences for the long-
term yield potential of the system cannot be easily predicted.
For instance, the new pasture composition may accentuate patch
selection if grazing animals express partial preference for clover
(132, 133). The resulting bimodal frequency of pasture mass
observed in cattle grazed systems [e.g., (134)] will likely reduce
the total production of the system (135). Questions that then
arise include: Where and how should we intervene to manipulate
the microbiome in an ecological system such as this? With what
purpose and consequences? What benefit can we expect, relative
to the manipulation of the plant or animal genome itself, from
going down this pathway?

CASE STUDY 3: RUMEN MICROBIOME

By virtue of converting human-indigestible plant polymers
(cellulose and hemicellulose) into edible animal protein,
ruminants enable high value food production from pasture plant
resources. In the New Zealand context, ruminant animals are
therefore an important part of the pastoral sector and produce
a wide range of food and fiber products of considerable value
to the economy. The digestion of plant material is achieved
via the ruminant’s specialized digestive systems, consisting
of a multi-chambered stomach which supports the growth
and fermentation activities of a diverse array of anaerobic
microbes. The main digestive processes are carried out in the
first two stomach compartments, called the reticulo-rumen,
where microbes colonize and degrade forage plant material.
The microbes ferment the released sugars into volatile fatty
acids (VFA), which are absorbed from the reticulo-rumen and
used by the animal to drive growth and formation of food
and fiber products. The process is regulated so that only a
partial fermentation occurs, allowing the ruminant host to absorb
and utilize the intermediate fermentation products for its own
metabolism and growth. The ruminant also benefits from the
provision of vitamins and from themicrobial cells flowing further
down the digestive tract.

There has been a continual drive by livestock breeders and
farmers to improve the efficiency of digestion in the rumen.
Studies of the rumenmicrobiome have focused on understanding
the contribution that the microbes make to the digestion and
metabolism of particular feeds, or that are involved in production
traits that are selected during animal breeding. However,
microbiome analyses are increasingly being used to identify
new ways to manipulate microbial metabolism, to enhance
digestive capacity and drive greater output of food and fiber
products by the host animal, while reducing waste or detrimental
end products of the fermentation that have negative impacts
on digestive efficiency, rumen function or the environment.
There are many previous examples of microbial manipulations
in ruminants to influence digestion, including additives such
as buffers, antibiotics [ionophores and non-ionophores; (136–
139)], methane inhibitors (140–148), vitamins, minerals, iso-
acids, enzymes, and exogenous bacteria and/or yeast (149).

These additives target different processes in the rumen and have
varying degrees of effectiveness, depending on the ruminant
species targeted and the diet fed to the animals. Many of these
additives are non-selective or have unknown modes of action,
and there is a need to have a better understanding of rumen
microbiome responses so that these manipulations can be more
precisely tailored for delivery of the desired improvements while
removing, or minimizing, any unintended consequences.

Rapid advances in DNA and RNA sequencing, and new
high throughput screening technologies for proteins and
metabolites, are nowmaking a complete description of the rumen
microbiome an achievable goal (150). Combined with the ability
to interpret the “omics” information using new bioinformatics
approaches, this is transforming our understanding of the rumen
microbial ecosystem (70, 151–154) and will inevitably lead to new
ways of manipulating ruminal fermentation processes. Although
these technologies are relatively new, they are being used to
address recurring questions about the contribution the rumen
microbiome makes to the nutritional functions of the ruminant.
This will allow assessment of the types of microbes that are
present, how many organisms are there, their relative quantities,
and their functional role. Furthermore, as a better appreciation
is gained of the importance of gastrointestinal microbes to their
host, new questions around their protective, immunological, and
developmental benefits to the host are being posed (155–157).

An example which illustrates the interactions between the
host animal and its rumen microbiome involves methane yield
differences in sheep that are related to expression of genes
encoding the hydrogenotrophic methane formation pathway
(158). Methane is produced in the rumen by the methanogenic
archaea and is released from animals via eructation, or belching,
and is also respired via the breath (159). Methane is an important
agricultural greenhouse gas and has a global warming potential
(GWP) of 28, meaning it is 28x the GWP of CO2. Agricultural
methane emissions contribute ∼14% of all anthropogenic
emissions and therefore reducing emissions from ruminant
animals is an important goal globally. While the main rumen
methanogens are known, the process of methane formation is
not clearly linked to either the number (160–162) or a particular
community structure of methanogens (163, 164). However, it
is known that the concentration of methanogenic substrates
(mainly hydrogen and methyl compounds such as methanol and
methylamines) and the interactions between methanogens and
microbes producing and consuming hydrogen in the rumen (165,
166) are important factors contributing to methane emissions.
To better understand methane formation, there has been a
concerted effort to accurately measure methane emissions from
ruminant animals, to examine the variation in methane yield (g
methane/kg dry matter intake) between animals, and to assess
the effects of different diets or dietary additives on methane
output. Measurements made in sheep have shownmethane yields
vary considerably between individual animals within flocks (167–
169), by as much as 34% between the low and high methane
emission phenotypes. These variations in methane yield have
been linked to differences in particle retention time in the
rumen (167, 170, 171) and rumen volume (172). Furthermore,
the variations were found to persist under different grazing
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conditions and to be a heritable trait in sheep (169). The
genetic basis for the methane phenotype in sheep is indicative
of a key interaction between the host animal and the rumen
microbiome. Because methane is produced solely by the action
of methanogenic archaea, rumen methanogens must make some
contribution to the methane phenotype in sheep, either directly
or via changes to the microbial community in the rumen.

To examine the contribution that the microbiome makes to
methane yield, sheep with high or low emission status were
rumen sampled andDNA and RNAwere extracted to enable both
metagenome and metatranscriptome analysis of their rumen
microbiomes (158).

Surprisingly, these analyses showed no differences in the
relative abundance of bacteria, archaea or eukaryotes between the
low and high methane yield sheep (158). Even detailed genus-
level analysis of methanogens showed only slightly elevated
levels of Methanosphaera spp. in the low methane yield sheep
and slightly higher Methanobrevibacter gottschalkii in the high
methane yield sheep, however these were not sufficient to
explain the differences in animal methane yield. An analysis
of abundance of genes encoding the methanogenesis pathway
also showed no significant differences, which confirmed the
rRNA gene analyses. However, when the metatranscriptomic
data were examined, there were clear increases in transcripts
of genes encoding the methane metabolism pathway in high
methane yield sheep. In particular, the genes encoding the
hydrogenotrophic methanogenesis pathway (in which methane
is formed from hydrogen and carbon dioxide) were significantly
up-regulated compared to the methylotrophic methanogenesis
pathway (where methane is formed from methyl compounds).
Specifically, high methane yield sheep had high transcript levels
of the methyl coenzyme M reductase enzyme (mcr, EC: 2.8.4.1)
which catalyzes the final step in the methane formation pathway.
A detailed comparison of these mcr genes found that they
clustered into three distinct groups, called sheep rumen MCR
groups 1, 2, and 3. The SRMR1 group of mcr genes were
derived from a new group of rumen methanogens which belong
to the order Methanomassiliicoccales. The SRMR2 group was
identified as encoding an isozyme of methyl coenzyme M
reductase (MCRII encoded by the mrt gene) and was found in
both Methanobrevibacter spp. and Methanosphaera spp., while
the SRMR3 was derived from Methanobrevibacter spp. only.
The vast majority of methyl coenzyme M reductase transcripts
were from the SRMR1 and SRMR3 groups and were 2.84-
and 2.85-fold more abundant in high methane yield sheep,
respectively, while SRMR2 transcripts were very low (158).
These results showed that transcriptional up-regulation of the
hydrogenotrophic methanogenesis pathway was an important
microbial mechanism contributing to higher methane yield
in sheep.

It makes biological sense that an up-regulation of
methanogenesis genes in rumen methanogens results in
more methane emissions from animals, but why does this
happen in some sheep and not in other grazing animals? A
possible mechanism has been proposed which incorporates
differences in rumen size and feed particle retention time,
leading to altered microbial growth kinetics and fermentation

thermodynamics which affects ruminal dissolved hydrogen levels
(165). It is proposed that low methane yield sheep have a smaller
sized rumen, which causes increased particle passage rate that
leads to higher rumen hydrogen concentrations (Figure 1). The
higher hydrogen concentration causes a negative feedback that
results in less hydrogen formation by fermentative microbes,
leading to less methane formation. Conversely, high methane
yield animals are predicted to have a larger rumen with slower
particle passage, which results in lower hydrogen concentrations,
enhanced hydrogen formation during fermentation, and more
methane. Under ruminal conditions of slower particle passage
rate and lower hydrogen concentrations, it is predicted that there
is a higher turnover rate of a smaller hydrogen pool through the
methanogenesis pathway to account for the elevated methane
formed. The lower ruminal hydrogen concentration means that
methanogens have to increase expression of methanogenesis
genes to produce more enzymes to scavenge the hydrogen and
maintain its turnover rate. This is because enzyme concentrations
as well as substrate concentrations can limit the flux through a
pathway, and increasing enzyme expression partially overcomes
the limitation of lower substrate concentrations. Conversely, a
high particle passage rate and high hydrogen conditions would
require a lower level of expression of methanogenesis pathway
genes to permit the same flux. More recent studies have shown
that the dissolved hydrogen concentrations in the rumen are
higher than predicted from calculations that assume equilibrium
with the gas phase (173). The concentrations of hydrogen
measured in vivo show that hydrogen is super-saturated in the
rumen, and significantly affects the calculated 1G of hydrogen-
forming and hydrogen consuming reactions in the liquid phase
of rumen (174).

The strong relationship between expression levels of
the hydrogenotrophic methanogenesis pathways in rumen
methanogens and methane yield in sheep, is the first example
of rumen microbial gene expression being directly linked to an
animal phenotype of relevance to environmental sustainability
and production.

DISCUSSION

The case studies described above illustrate the complex nature of
interactions within the microbiomes of the soil, plants and the
rumen of grazing animals. The potential for further higher-level
interdependencies and interactions between the microbiomes
along the soil, plant and animal continuum dramatically
increases the overall complexity in a wider ecological context.
Associations between the microbiomes of soil, plants, above
and below-ground animals, and the environment are massively
complex. These involve soil “genotype” x plant genotype x animal
genotype x rumen “genotype” × environment interactions.
Thus, while there are many examples of the importance
of management of individual and simple microbiomes, most
ecosystem outcomes are supported by the activities of multiple
consortia of microorganisms. These outcomes are the result of
many microbial species and strains, with a collective functional
capacity resulting in an altered ecosystem phenotype. The
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FIGURE 1 | Proposed rumen model for methane yield phenotypes in sheep.

opportunities to harness these interactions are immense, and
offer great potential if they can be understood, directed and
actively managed.

SOIL-PLANT MICROBIOME
INTERACTIONS AND OPPORTUNITIES

Critically, the soil microbiome has a number of direct influences
on plant performance. With the exception of seed-borne
(vertically transmitted) endophytes, the soil biology provides
the primary reservoir of microorganisms that colonize the root
rhizoplane, rhizosphere, and ultimately the wider endophytic
microbiome within the plant (175–179). The discovery of plant
endophytes remains in its infancy, and estimates of 1 million
endophytic species of higher plants may be reasonable (180).
The consequences of the endophytic colonization of plants are
profound, as the plant microbiome has wide ranging impacts
on expression of plant phenotypes. Plant-associatedmicrobiomes
have been shown to confer drought tolerance (181), alter
flowering phenology and timing (182, 183), influence plant shoot
dry matter production (179), and induce systemic resistance
to diseases (184). The interaction between the microbiome
and plant genetics also affects aspects of plant quality via
altering changes in the production of plant metabolites, or
providing additional metabolic capacity via ancillary metabolic
pathways encoded in the microbiome (185). An interesting
example of interactions within the soil-plant microbiomes
involves assessment of transgenic potato plants expressing an
antimicrobial protein that is secreted into the apoplastic space

between cells (186). While minor differences in the microbiomes
were found in the rhizosphere of transgenic vs. non-transgenic
plants, these changes were negligible compared to differences
between non-transgenic plants of different potato cultivars.
Another example is in flavor development in strawberries
where the quantity and profile of their flavor is influenced
by microbiome regulation of fuaranol synthesis (187, 188).
Furthermore, the soil microbiome influences the microbial
community on the grape berry and subsequent wine properties
(189). It is also likely that microbiomes affect the quality of resins,
fruit, honey, and essential oils (185). While the manipulation
of plant traits through the microbiome have been vastly under-
studied, this represents major opportunities for production of
novel products or additional value of current products (190).
Indeed, the microbiome background in which plants are grown
can be seen to contribute to the wider terroir of the plant product,
and may be used to add value to the provenance of products
grown in different soils.

There aremany direct and indirect interactions between below
and above ground ecosystems, and these converge into terrestrial
ecosystem function (191, 192). Collectively these express as an
“ecotype,” or “functional status” to the soil. Across a multitude
of functions, a “normal operating range” of soil ecosystems can
be defined. These can be assessed by sampling across a range of
sites to give a generalized understanding of the performance of
a soil, allowing an assessment of measured vs. expected system
function (81). This framework can be expanded to investigation
of factors such as expression of plant-genotype effects, impacts on
soil ecosystems due to disturbance (e.g., by humans or climate),
and assessing ecosystem recovery. Future decisions about plant
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or cultivar selection for different farming systems (e.g., pastoral,
arable, horticulture, and forestry) will include an understanding
of the underlying soil biology. Furthermore, these decisions are
likely to extend to precision use of fertilizers, agri-chemicals, and
seed dressings (including biological ingredients), that consider
the wider ecosystem parameters. These opportunities will need
to find a balance between optimal output of products and
sustainable environmental outcomes, which are not obtainable
with the current laissez-faire approach.

WHAT CONNECTIONS EXIST BETWEEN
SOIL, PLANT, AND ANIMAL
MICROBIOMES?

Research is now striving to understand the interactions between
the soil, plant, and animal microbiomes within different
environmental situations (Figure 2). Such holistic, community-
level approaches to assess complex, multi-trophic linkages and
communication among microorganisms, plants, and animals,
within a wide environmental spatiotemporal heterogeneity, will
require application of a range of emerging tools and approaches
such as those based on ecological genomics (71). These will need
to deliberately embrace the inherent complexity of microbiomes
as “meta-ecosystem” containing an assortment of biological
elements (species, mobile genetic elements), with different
functional potentials resulting in an overall ecosystem phenotype.
An integrative ecological genomics approach, that explores
interactions among and across these meta-ecosystems and their
collective ecological control, will be required to translate the
biology to useful applications in a control-analysis approach (81).

As indicated in the dairy pasture dynamics case study,
animal production systems in New Zealand are based on year-
round grazing of ruminants on pastures, which are dominated
by perennial ryegrass-clover mixtures (125). There are clear
connections between the plant and animal microbiomes via
the ingestion and fermentation of plant material in the rumen.
However, there is very little information on how the above
ground plant microbiomes (i.e., endophytic and ectophytic
microbes colonizing the internal and external parts of plant stems
and leaves) affect digestive processes in the rumen. It is known
that as soon as plant material enters the rumen, it is colonized by
a succession of different rumen microbes which initiate digestion
(193–195). There is also evidence that ingested plant material
continues to metabolize and undergoes a cell death response
which leads to DNA fragmentation and protein breakdown,
independent of rumen bacterial activities (196). This autolytic
plant protein breakdown contributes to the inefficient use of
plant protein which can result in much of the ingested nitrogen
being lost from the animal in the form of ammonia and urea,
which can cause environmental problems when excreted from
the animal. The types of endo- and ecto-phytic plant microbes
entering the rumen, and their activities during the plant digestion
process, are poorly understood. Knowing what type of microbes
are carried into the rumen in, or on, plant forages may reveal
opportunities for microbial manipulation of the plant autolytic
processes, allowing for the enhancement of rumen microbial

colonization of the plant material or improvement of the ruminal
digestion process itself.

Investigation of plant microbiomes entering the rumen may
also offer some new insights and perspectives into facial eczema
(FE), a significant disease in ruminants caused by saprophytic
fungi growing on the dead litter at the base of pastures. The
fungus, Pithomyces chartarum, proliferates under the warmmoist
conditions typically found in late summer and early autumn,
and produces large numbers of spores which are subsequently
ingested by the animal. In the rumen, the spores release a
mycotoxin, sporidesmin, which is absorbed and causes damage
to the liver and bile ducts. The damaged liver is unable to
breakdown chlorophyll normally and a toxin, phylloerythrin,
builds up in the blood causing sensitivity to sunlight and skin
inflammation, leading to the FE symptoms of skin irritation
and peeling, lowered production and sometimes death of the
animal. Current management practices for FE include treatment
of stock with zinc sulfate (supplied via their drinking water,
drenched as a liquid product or delivered via an intraruminal
slow release capsule), or applying fungicide to pastures before the
spore counts become too high. There are also animal breeding
programmes underway to select for FE-resistant sheep and
cattle. Non-toxigenic isolates of P. chartarum have also been
investigated as potential competitive exclusion biocontrol agents
under New Zealand conditions (197). While sporidesmin levels
were reduced by the application of the non-toxigenic isolates to
pastures, the percentage of such isolates declined from 90 to 54%
of all P. chartarum isolates retrieved during the 19-week trial, and
after 15 months represented only 4% of the isolates from treated
plots. This indicates that non-sporidesmin-producing isolates did
not persist in the environment, at least under the field conditions
examined. These observations suggest that better understanding
of the microbiomes associated with decaying plant material in
pastures, and of the ingestion and subsequent degradation of
spores in the animal gut, may lead to easier and more effective
means of controlling this serious animal disease.

While the interactions between plant and ruminant
microbiomes are obvious, it is less appreciated that ruminants
also ingest significant quantities of soil. The amounts ingested by
ruminants depends on the amount of soil that becomes attached
to the portions of the plant grazed by the animal, which is
influenced by the weather conditions and soil type. Soil ingestion
is lowest in the summer months on soils with strong structure
and is highest in the winter months on soils with poor structure,
where there is greater opportunity for rainfall to mediate soil
transfer to the above ground parts of the forage plants (198, 199).
Soil ingestion was originally studied in relation to teeth wear in
sheep, as particularly abrasive soil types contribute significantly
to teeth wear, limiting the productive lifetime of ewes. These
studies showed that ewes can ingest up to 400 g of soil per day
(198), while similar studies carried out in dairy cows found
they could ingest more than 2 kg of soil per day under certain
conditions (199). Soil ingestion is also a major route of uptake
of trace elements for ruminants (198). The best known example
of this is the uptake of cobalt (Co) to alleviate the symptoms of
“bush sickness” or “wasting disease.” Co is required in ruminant
diets for the bacterial synthesis in the rumen of cobalamin,
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FIGURE 2 | Harnessing microbiome function.

which is also known as vitamin B12. Cobalamin is an essential
cofactor for the enzyme methylmalonyl-CoA mutase, involved
in an important metabolic pathway of ruminants, converting
propionic acid (one of the main VFA produced by the rumen
fermentation) to glucose (200, 201).

Given that soil can contain 109-1010 organisms per g, the
amount of soil ingested by ruminants reported above (198, 199)
represents up to 4 × 1011 to 4 × 1012 soil microorganisms
ingested by sheep per day, or 2× 1012-2 × 1013 microorganisms
per day by cattle. The potential impact of this ingested soil
microbiome is estimated to be from ∼8 to ∼2.6% of the rumen
microbiome of sheep and cattle, respectively. These estimates
of soil-borne microbes entering the rumen are consistent with
recent findings of a global rumen census, in which exogenous
microbes (likely to be derived from ingested plant material, water
or soil) on average made up ∼3% of the rumen microbiome
sequences (151). The changes in dairy pasture dominance by
clover over ryegrass in Case Study 2 described above, has shown
the indirect effects of soil microbes on ruminant production via
altered forage speciesmix and elevatedN fixation. However, there
has been no examination of the direct influence that ingested
soil microbes themselves might have in the rumen. The rumen
and the soil environments have very different physico-chemical
conditions which select for dissimilarmicrobiomes, therefore one
would not expect soil organisms to survive, or be metabolically
active, for long periods in the rumen. However, the effects of
enhanced trace element supply to ruminants via ingestion of
soils and the subsequent co-factor biosynthesis by bacteria in the
rumen, suggest that some interactions of relevance to ruminant
growth and health do occur at this interface, and are worthy of
further characterization.

After digestion in the rumen, the remainingmaterial is further
fermented in the hind gut before being passed from the animal

as dung. In the New Zealand dairy grazing system, dung is
mainly deposited as “cow pats” onto the pasture, and eventually
is broken down by a combination of microbial, insect and
earthworm activity and incorporated into the soil or is volatized
as ammonia. The amounts of manure produced by cattle varies
considerably; beef cattle consuming 12 kg dry matter intake
(DMI) per day produce about 5–6% of their body weight as
manure each day (average ∼27 kg wet weight), while dairy cattle
with a 22 kg DMI produce closer to 70 kg per day. The microbial
density in manure is roughly equivalent to the density in the
rumen, but the phylogenetic distribution of microbes within
the manure differs. While the rumen microbiome is usually
dominated by Firmicutes and Bacteroidetes, manure can have
altered Firmicutes to Bacteroidetes ratios (202) or elevated levels
of Proteobacteria (203). The type of diet consumed by the animal
also influences the composition of the fecal microbiome (204).
Studies on the effects of manure deposited onto pastures of
upland soils, indicate that dung deposition provides additional
substrate for microbial growth and metabolism, and alters
nutrient availability (205–207). The contribution of ruminant
gut microbes in the manure, to these soil processes remains
unknown, and represents a potential point of intervention to
affect beneficial changes to the availability of nutrients from
the soil.

DOWNSTREAM IMPLICATIONS FOR
ENVIRONMENTAL AND FOOD
MONITORING

While focusing on increasing the benefits of enhancing
agricultural production through the microbiomes along the
soil-plant-animal continuum, there is also a need to consider the
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potential effects of animal pathogens on human health. We know
that changes in animal diets and/or farm systems can affect the
zoonoses carried by farm animals (208–210). These zoonoses can
impact on human health via multiple pathways. The first is direct
animal contact which impacts predominantly on the people who
work in the industry, as well as non-occupational contact (211).
The second pathway is via contamination of the food products
consumed (212, 213). The third major pathway is via water
contamination (214) which in itself can exhibit three separate
pathways such as drinking water (215), contact recreation (216)
and irrigation of food crops (217). These outbreaks of zoonotic
disease events can have considerable economic cost to the
agricultural industries (218–220).

Genomic technologies present a major opportunity to have
a transformational impact on environmental monitoring and
food monitoring. This will result in increased use and adoption
of genomics tools for diagnostic purposes associated with the
monitoring of “risk microbes” involved with environmental
health, food safety and well-being of people. Genomic techniques
have already shown great potential in linking and understanding
sources of food or water contamination (221–223). Highly
sensitive targeted amplicon sequencing can readily detect specific
pathogens and environmental metagenomics will generate huge
data sets in which risk microbes can be identified.

Genomic technologies are extremely sensitive, therefore
interpreting a positive signal for the presence of a DNA
sequence in a sample becomes absolutely critical. There is an
urgent need to establish “genomic thresholds” for water quality
or food contamination to allow appropriate interpretation of
genomic diagnostic data by environmental and food regulatory
authorities. Similar issues are also posed for the implementation
of genomic diagnostics in biosecurity decisions at border controls
or clinician/veterinarian interpretations in human/animal health.
A critical requirement will be the up-skilling of end-users in
genomics to ensure that genomic-based diagnostic data can be
effectively interpreted and appropriate actions implemented by
stakeholders when enforcing policy decisions.

FUTURE OPPORTUNITIES FOR
UNDERSTANDING THE MICROBIOME
INTERACTIONS

The principal advantage of using genomic tools to improve
the understanding of microbiome interactions is the greater
precision in identification and quantification of the structure
of the microbial communities. Enhanced detection and
characterization of the microbial members of each microbiome
(the number of different species, the number of individuals
within the species, and the detection of unculturable
microbes), along with predictions of their metabolic capabilities
from retrieved genomic information, will greatly enhance
our understanding of microbiome community structure
and function.

Assessment of species rank-abundance curves (RAC’s) show
that the soil microbiome contains many rare species (224,

225). This has particularly been brought to light with NGS-
based community sequencing analysis; with increasing depth of
sequencing, generally using SSU rRNA phylogeny, more species
are discovered. That is, the tails of the RAC’s generated for
soil microbial ecosystems are very long. However, do these rare
species matter in relation to soil-provided ecosystem function?
In many cases, the rare biosphere is the reservoir of many
novel lineages, colloquially referred to as “microbial dark matter”
(226). Our understanding of these taxa is slight, particularly as
many of these novel, and sometimes candidate phyla remain
to be isolated in pure culture (227). As such, the ecological
importance of the rare biosphere is unclear. Genomic analysis
has shown that these taxa harbor unexpected metabolic features
(226), and are therefore a potential source of novel enzymes and
“stored ecosystem potential” (228). Furthermore, the recruitment
of taxa, with unique ecophysiological adaptations, has been
shown to be essential in recovery of soil ecosystem function after
disturbance events, such as ammonia oxidation (229). Thus, the
rare biosphere has wider impacts on ecosystem function than
the total size of the community. It represents an important “seed
bank” of organisms with which wemay begin to have a functional
role as opportunities arise, for example recruitment by a host
plant or animal, or edaphic or environmental changes.

Numerous microbiome studies have been performed using
rRNA gene targeted approaches. While this marker gene has
worked well for many examples it is dependent on organisms
within the sample having matches to the primer sequences used.
New primer-independent, metagenomic shotgun sequencing
approaches are rapidly increasing the volume of sequence data
of microbiome samples across numerous environments along
the soil-plant-grazing animal continuum. This is producing large
databases of sequence information which is providing the science
community with a significant resource for data mining to better
understand these microbiomes, and will also act as a reference for
characterization of future microbiomes. The continual increase
in sequencing capacity at lower cost and access to constantly
improving computational resources (e.g., more powerful data
processing hardware and purpose-written, open source software)
will allow new science questions to be asked about microbial
functions in systems that were previously not possible. These
advances will substantially improve the degree of replication and
depth of sequencing required to cover the variables present in a
given microbiome, or compensate for variation within samples
that was not previously feasible (230).

The metagenomic shotgun sequencing of significant
components of entire microbial communities is now becoming
achievable at a reasonable cost. Coupled with improved
computational power and bioinformatic analyses, this will
dramatically improve investigation of microbiomes. Having
the technologies to understand how the organisms within a
microbiome interact to support ecosystem functions, such as
nutrient cycling, is an exciting prospect and will undoubtedly
lead to opportunities for discovery of novel microbiome features
to improve ecosystem production and environmental outcomes.
However, there are still significant hurdles to overcome
(231, 232), and achieving a more comprehensive description of
the soil-plant-grazing animal microbiome continuum would
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represent a remarkable advance in our ability to characterize and
understand complex ecosystems.

FUTURE QUESTIONS FOR
UNDERSTANDING THE
SOIL-PLANT-GRAZING ANIMAL
MICROBIOME CONTINUUM

Understanding of the various microbiomes that make up the soil-
plant-grazing animal microbiome continuum involves a major
effort. Integrating metagenomic data frommultiple microbiomes
to get a more holistic view of ecosystems is rare, but is beginning
to be addressed. Trying to understand the soil-plant-grazing
animal microbiome continuum requires a clear framework,
informed by the answers to some key questions. These include:
how do the different microbes within a microbiome contribute
to the overall phenotype? how do the different microbiomes
interact with each other? and how do we move to an ecosystem-
wide approach to understand the (role of the) microbiomes
across the ecosystem? While these questions are answered,
the main metabolic pathways in each microbiome need to be
characterized along with how the composition of the microbiome
can predict the phenotype. Genomics has already allowed for a
vast amount of data to be generated, but the knowledge on how
to translate this genomic knowledge into a phenotype requires
further attention.

With the ever increasing volume of data available for
each microbiome sample, microorganisms present in minute
quantities will be increasingly detected with greater accuracy.
This will provide a greater understanding of the relationship

between the quantity of microorganisms in a sample and
the contribution (“quality”) or ecological “phenotype” of that
organism. For example, do microorganisms present in high
frequency (quantity) contribute more to the overall phenotype
than microorganisms which are rare (quality)?

Improved understanding of the microbiome composition
with respect to quantity and quality will raise potential options
to manipulate the microbiome to our advantage. Examples
include the potential of keeping nutrients in the soil through
using diverse plant genotypes/ plant species to manipulate the
microbiome. The challenge ahead is to use the expanding
genomics knowledge not only to increase the resilience of
pastoral systems (and pasture persistence) by manipulating the
microbiome, but to achieve this with less environmental impact
while maintaining or improving agricultural outputs.
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