OUR LAND

 AND WATER SYMPOSTUMKia Mauri Ora te Whenua

FUTURE LANDSCAPES

Physiographic Environments of New Zealand

Lisa Pearson and Clint Rissmann
Land and Water Science Ltd

(9.)
 FUTURE LANDSCAPES

In the future landscapes contain mosaics of land use that are more resilient, healthy and prosperous than today.

Strategic Area 1

Be able to see what diversity is possible and match land use to what it is suitable for.

Strategic Area 3

Provide the novel production systems that use healthy land and water to generate high-value products.

INCENTIVES FOR CHANGE

New Zealand's primary producers are well-rewarded for producing high-value products
in sustainable ways.

Strategic Area 4

Capture and share with the producers more of the value consumers associate with our products.

Strategic Area 5

Increase and share value based on mechanisms that rewards sustainable land use and high-value products.

CAPACITY FOR TRANSITION

We understand what it will take, and have the tools to help us, transition to resilient, healthy and prosperous futures.

Strategic Area 7

Increase our social capital so that we can have well informed debate about alternative futures.

Strategic Area 8

Act as kaitiaki, being responsible for our actions within enterprises, in a catchment and beyond.

Strategic Area 9

Manage pressures and remove the barriers to a transition.

What is the problem?

The role of the landscape in water quality outcomes is not integrated in a way that is relevant to land users

- Thousands of scientific articles demonstrate the key processes controlling water quality
- Utilise existing national and regional geospatial and water quality datasets

@OurLandandWater \#OLW2019

OUR LAND

 AND WATER S Y M POSIUM Kia Mauri Ora te WhenuaHydrochemical and Water Quality Data ~30,000 sample results (surface water, groundwater, precipitation, and soil water)

Geospatial Datasets Elevation, soil, geological, hydrological, land cover, and

Conceptual Understanding
Dominant Process-Attribute Gradient Maps

Numerical Model
Machine Defined Symbolic Regression
Estimate steady state water hydrochemical and quality Tested against 93 long-term surface water monitoring sites comprising of $\sim 7,000$ samples.

Examples:

TN $=f($ LUI, BP, OLF, Atm $)$
$\mathrm{DRP}=\mathrm{f}(\mathrm{Atm}, \mathrm{OLF}, \mathrm{BP}, \mathrm{GRP}$, LUI, GANC, DD)
E. coli = f(Atm, LUI, RCD,

ART, OLF, BP)

Science of the Total Environment (2019) 672: 815-833

Southland Region Example

Spatial variation in water quality is a function of the landscape and land use

- Built upon landscape data
- High accuracy: cross validated R^{2} of $0.81-0.95$ for TN, NNN, TP, DRP R^{2} of $0.72-0.73$ for TSS and E.coli
- Using data to reveal the grain of the landscape most important to water quality outcomes

PENZ Regional Councils

- Northland
- Auckland
- Waikato
- Bay of Plenty
- Horizons
- Canterbury
- Southland

Sustainable Farming Fund Project

- Outreach education portal

Who is using the research to make a difference?

- Designed by farmers for farmers

@OurLandandWater \#OLW2019

How is it building towards the Our Land and Water goal?

- Sustainable Farming Fund key to delivering Physiographic Environment Science to end-users
- Help land users to understand the lands natural capital
- Inform decisions regarding land management and mitigations
- Ultimately minimise environmental impacts

Collaborators

Collaborators

Physiographic Environments of New Zealand

In conjunction with Regional Councils

Sustainable Farming Fund

SOUTHERN INSTITUTE OF TECHNOLOGY te whare wanancao murhiku

Deer Industry New Zealand

Team

Dr Clint Rissmann

Dr Lisa Pearson

Dr Monique Beyer
Matt Couldrey
Jessie Lindsay

More Information

www.landwaterscience.co.nz/penz www.landwaterscience.co.nz/journal-article
www.landwaterscience.co.nz/sff
Funded by Sustainable Farming Fund
Ministry for Primary Industries
Manatū Ahu Matua

