

Sustainable Agro-ecosystems (SAE): An OLW aligned programme

Mike Beare

Paul Johnstone, Steve Thomas, Jo Sharp, Edmar Teixeira, Sarah Bromley, Roger Williams New Zealand Institute of Plant & Food Research

OLW Symposium (April 2017)

Sustainable Agro-ecosystems Programme

- Knowledge & tools that enhance productivity & resilience of primary industries while reducing their environmental footprint to meet community and market defined limits.
 - Improve sustainable production
 - Improve water quality & availability
 - Reduce GHG, adapt to climate change
 - Inform policy and practice
 - Enable market access
 - Grow export earnings
- Diverse range of partners:
 - FAR, Zespri, DairyNZ, HortNZ, IrrigationNZ
 - MPI, NZAGRC,
 - OLW & Deep South NSC
- Current funding:
 - SSIF (Core) = \$4.5 M
 - Industry/Policy aligned = \$3.2 M

SAE programme – Aligned to OLW NSC (Focus on Soil, Arable, Horticultural & Environmental Science)

OLW Objective: To enhance primary sector production and productivity while maintaining and improving our land and water quality for future generations

Three Major Themes

- Land use capability to suitability: Knowledge & tools to better match land use & mgnt with productive potential & environmental constraints of land.
- **Productive plants for the environment:** Crops & mgt practices that deliver greater value to industries from better environmental performance of farm systems.
- **Future Farming Systems:** New production systems and technologies that enhance the productivity, profitability and environmental performance.

Outcomes

- Improved understanding of impacts, risks & trade-offs of land use & mgt decisions
- Position primary industries to respond to changes in community define limits, climate, resource allocation (e.g. water) and market values.

Land use capability to suitability

Outcome objectives:

• Knowledge and tools to better match land use and management with the productive potential and environmental constraints of the land.

Research focus:

- Soil/Land attributes/constraints (with LCR)
 - Sustainable production of different land uses (resistance / resilience)
 - Risks of adverse environmental impacts (<u>N, P, sediment</u>, fecal bugs)
 - Addresses gap in the OLW LUS programme (beyond LU capability)
- Understanding and managing
 - Soil organic matter stock & services (Aligned to OLW Suitability)
 - Soil physical properties & biophysical processes (Aligned to OLW Suitability)
 - Water & solute transport, storage and attenuation (Aligned to OLW Sources & Flows)

Understanding and Managing Soil Organic Matter

Improving predictions of N mineralisation

- N mineralised from SOM: important N source; difficult to predict
- Existing methods are poor predictors N mineralisation
- Better prediction \rightarrow improved fertiliser forecasting
- Improved NUE and reduced risk of N losses
- Can we identify practical, dependable methods?
- N mineralisation soil potential, in field actual
- What are the key soil fractions or sources?
- Hot water soluble organic N

Curtin, Beare et al 2017 SSSAJ

	Net N Mineralised (kg/ha)		
Method	Dryland	Irrigated	
Measured	45 ± 7	71 ± 15	
Predicted	41 ± 6	70 ± 14	

Irrigation, soil organic matter & ecosystem services

- Agricultural intensification
 - Irrigation expansion on soils of low natural capital (shallow, stony, sloping)
- How does irrigation affect SOC storage & turnover?
 - Enhanced SOC storage assumed, but true?
 - What are the consequences for ecosystem services?
- Soil water repellency and irrigation (with MVI)
 - Most soils are sub-critically repellent
 - Even at low irrigation rates water will bypass much of matrix
 - Managing SC repellency could increase irrigation efficiency

Mueller, Thomas Carrick

Soil physical constraints to crop/pasture productivity

Different forms of constraints (Inherent vs dynamic):

- Shallow top soils (subsoils affect water storage/drainage)
- Structural breakdown and consolidation from loss of SOM
- Soil compaction (wheel trafficking, livestock treading)

Soil compaction

- How prevalent is soil compaction? (soils, systems)
- How does it affect soil function? (water, nutrients)
- What are the costs? (loss of production, input costs etc)
- How can we represent the effects in crop system models?

	Land use	0-15 cm	15-25 cm
Pastoral	Sheep/beef	26	19
	Dairy	36	30
Cropping	Mixed arable	13	21
	Intensive arable	12	29
	Intensive vegetable	41	38

% of paddocks with PR greater than 2.5 Mpa (PR normalised to 35% v/v)

Controlled Traffic,

Heavy Compaction

Crop dry matter (silage harvest)

4.5 t DM/ha

19.2 t DM/ha

Plants for the Environment

Productive plants with enhanced environmental traits

Outcome objective:

- Crops & mgt practices that deliver greater productivity, profit, and/or policy compliance to primary industries from better environmental performance.
- Includes crops to address specific yield or quality gaps and environmental impacts and crop rotations to enhance resource use efficiency and farm system resilience.

Research focus:

- Critical plant traits
- Optimising the mix and management of plant traits
- Advanced modelling tools to predict productive and environmental outcomes

Plants for the Environment

Productive plants with enhanced environmental traits

Beneficial attributes may include:

- Improved nutrient acquisition
 - Winter active & deep rooted plants to mop up excess N
 - Enhanced uptake of P (roots, adsorbed P)
- Root characteristics that:
 - improve soil structure formation
 - Enhance access to plant available water
 - Penetrate or reverse soil physical constraints
- Biological Nitrification Inhibition:
 - Focus has been on grasses
 - Some crops also have high BNI activity (species, cultivars)
 - What plants are most effective and under what conditions?
 - Can we manage the outcome?

Catch Crops to reduce NO₃ leaching ex grazing

Oats sown in winter yielded 6-12 t DW/ha and reduced soil N

Future Farming Systems

Outcome objective:

• New production systems and technologies that enhance the productivity, profitability and environmental performance of primary industries

Research focus:

- Smarter irrigation and nutrient management systems
- Adaptive management for drought mitigation
- Precision (spatial & temporal) management
- Advanced modelling tools to predict productive and environmental outcomes

Multi-crop models to test variability in outcomes

Example of variability for a June N load of 400 kg/ha with mid-July cover crop

Irrigation, land use change & ecosystem services

- Managing Irrigation to mitigate N losses
 - Keeping soils wet = high N_2O emissions
 - Maintaining deficits (less frequent irrigation) reduces risk of large N₂O emissions and N leaching
- How do soil physical properties affect process?
 - PSD, pore connectivity and diffusivity
 - Effects of soil compaction & structural consolidation
- Are there trade-offs between N gaseous emission and N leaching?
- Can develop rules & tools to manage these interactions to enhance WUE and mitigate nutrient losses?

Compacted

