

OUR LAND AND WATER

Toitü te Whenua Toiora te Wai

LINKING WATER FLOW AND CONTAMINANT TRANSFER THROUGH MESO-SCALE CATCHMENTS

Shailesh Singh, R Stenger, M Devane, L Basher, R Muirhead, MS Srinivasan NZHS Napier

LANDCARE RESEARCH

2017

Our Land and Water mission:

"To enhance primary sector production and productivity while maintaining and improving our land and water quality for future generations".

Sources & Flows objective:

"To identify and map key flow pathways and contaminant fluxes in the landscape to inform suitability for land use and response at multiple spatial and temporal scales".

Key pathways and contaminant fluxes in the landscape

Basic questions

- Where does water come from ?
- How long does it
 - stay in a catchment?
- What happens along the way ?

After Abbott et. al. 2016

Key pathways and contaminant fluxes in the landscape

How do contaminants reach the stream?

Stenger et al., 2016

Stenger et al., 2016

Stenger et al., 2016

Spatial and temporal variability

- Comprehensive countrywide investigations unaffordable
 - Transport and transformation processes between sources (S) and receptor (R) still insufficiently understood

Objective

To review the state-of-the-science that describes available approaches to model the link between catchments and their unique chemical, hydrological and isotopic signatures and the dominant transport pathways of contaminants.

Flow 30 **Contaminants** 25 20 2 Nutrients 9 in Nitrogen Quick Phosphorus Sediment Pathogens (Faecal Indicator 40 35 Organisms) 30 Baseflow 52

Extracting pathways info from stream monitoring data

Review of 'Indirect Methods' in Sources & Flows

Challenges

Hydrograph Separation

Hydrochemical modelling

Examples: Modelling of flows along pathways

(Streamflow Generation Eigen Model)

- Requires <u>stream flow, water</u> <u>chemistry, and climate time series</u>
- Remarkably effective provided appropriate calibration methods are used that correctly handle the inherent uncertainties
- Markov Chain Monte Carlo sampling code DREAM_{zs} used for calibration

Examples: Modelling of flows along pathways

Water Flux Results

Woodward et al., 2013 + 2017

Examples: Modelling of flows along pathways

Nitrate Flux Results

AND WATER

Challenges

Toiora te Wai

Summary

- Combined analysis of stream flow and water chemistry time series can provide valuable insights into key flow pathways and contaminant fluxes in the landscape
- Uncertainty analysis crucial
- Temporal variability challenging
- Superposition of spatially and temporally distributed processes will weaken signals in larger catchments

OUR LAND

AND WATER

Toitū te Whenua.

Toiora te Wai

Nationa

Challenges

Thank you for your attention!

Shailesh.Singh@niwa.co.nz

http://www.ourlandandwater.nz/

Hydrograph Separation

_

Туре	Description
Graphical	Methods involve drawing a line from the starting point of the rising limb on the total hydrograph to point on the recession limb
Analytical	Storage-discharge relationships for catchment areas Mathematical algorithms
Filtering technique	Use of digital filters
Frequency based analysis	Flow duration curve, calculates exceedance probability
Geochemical/isotopes	Use of chemical characteristics such as conservative natural isotopes and chemical tracers. Requires long-term sampling from the surface and subsurface flow in different seasons during wet and dry years
Heat Tracer method	Methods based on temperature difference between, surface water and ground water

