Next Generation Emissions to air Breaking the Systems production ceiling

Adopting AgResearch-recommended grazing management strategies reduces overland flow and sediment losses during winter

OUR LAND

oitū te Whenua,

Toiora te Wai

Our Land and Water National Science Challenge Toitū te Whenua Toiora te Wai

Next Generation Systems

Robyn Dynes, Anita Wreford, Alan Renwick, Warren King, Paul Johnstone, Peter Clinton,

Carolyn Hedley, Grant Edwards.

The shall a shall be the shall be a shall be

Why science in NGS

- Development, redesign, New technologies
- Science supporting innovation
- Business decision
- Which solutions have comparative advantage??

Toitū te Whenua, Toiora te Wai

Weighting of each alternative under each criteria – sheep dairy example

What are the benefits from partnering with NGS?

Business

- Certainty of investment
- Less risk

Science

Time

Next Generation Systems: partnerships with

innovators

Bional Councils Land owners Land Impact per \$ spent

- Corporate farming : redesigning systems within nutrient limits
- Corporate farming:- diversifying portfolio
- Maori: iwi and collectives exploring alternatives

Aligned science

Mitigation

Toitū te Whenua, Toiora te Wai

Next Generation Systems: case studies of optimised systems

n reset

Challenge science

- Value chain Taupo beef
- Precision Agriculture Greenvale pastures
- Continuous-harvest forestry
- Iwi supply chain development

Mitigation

• ????

Aligned science

Background to dairy system studies

Previous Modelling

More efficient systems based on 5-point plan: 1. High BW lower SR 2. NI + reduced N fert 3. Reduce replacements 4. High energy/low N 5. Stand-off/housing

Dairy systems trials incorporating (parts of) this 5point plan:

- a) Waikato (1, 2, 3, 4, 5)
- b) Canterbury (1, 2, 3, 4)
- c) South Otago (2, 3, 4, 5)

Evaluate and demonstrate feasibility, practicality, financial returns, and other environmental impacts of a range of pastoral systems

Evaluate and demonstrate GHG emissions intensity

Improved efficiency systems

5-point plan	Waikato	Canterbury	South Otago OPT	RES
1. Higher breeding worth lower SR	\checkmark	✓		
2. Reduced N fertiliser	\checkmark	\checkmark	\checkmark	\checkmark
3. Reduced replacement rates	\checkmark	\checkmark	\checkmark	\checkmark
4. High energy/low N	✓ Grain	 ✓ Diverse pasture Fodder beet 	✓ Cereal	
5. Stand-off/housing	\checkmark			\checkmark

Programme Integrated Farm systems Outcome/Impact Area Dairy Systems

Approach

To apply the models in practice: a farm systems evaluation of practices that reduced GHG emissions intensity in modelling studies.

Can't measure GHG losses from entire system!

Instead:

- 1. Use 'Inventory' type calculations
- 2. Combined with targeted CH_4 and N_2O measurements
- 3. 'Source' detailed systems data from P21 partners

Achievements

- 1. Targeted measurements to obtain systems specific emission factors for combinations of farm practices within practical systems
- 2. Calculated relevant GHG footprint for systems comparisons
 - Provided a wider systems analysis added GHG to \$\$, environmental losses to water.

Key message: to demonstrate impact of changed practices must have accurate and relevant GHG emissions data

Future Farm Systems: partnership model

Farmers: Farmer, Industry, Rural professionals and Researchers Co-development towards a shared problem - shared solutions

- Key client value
- Project management role
- Relationships with science
 and sector

- New farm systems analysis tool developed
- Farm Systems research 'grounded' on commercial farms
- Demonstrating 'value' of component research
- Greater impact from science

Joint benefits:

- Publications
- Exposure
- Value/Impact

Future Farming Systems - Dairy

<u>The Goal</u>: Additional 2 t DM/ha more (considered very difficult)

<u>Where</u>: Rakaia Island Dairy

<u>Who</u>: AgResearch science expertise in farm systems, pastures, pests, disease, soils and Ravensdown staff

Farming system – analysis using yield mapping as a tool

Identified potential leverage points – pasture variability

> agresearch ravensdown

Differential P applications within paddocks

Leverage Point: irrigation

Component research and AgResearch Science to assess key leverage points

Leverage Point: grass grub

